

Design Principles and Candidate Architecture for a 3.5 GHz Spectrum Access System

Milind Buddhikot Alcatel-Lucent Bell Labs <u>milind.buddhikot@alcatel-lucent.com</u>

1 | FCC 3.5 GHz SAS Workshop | MMB || COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Alcatel·Lucent 🥢

Four SAS Design Principles

- 1. Provide precise spatio-temporal information about primary spectrum availability
 - Tradeoff: (a) primary protection, (b) information security and (c) spectrum utilization
- 2. Support multi-tier & multi-type secondary users (aka AUs) by providing dynamic information on amount & quality of available spectrum
 - Tradeoff: (a) No. of tiers and use types and (b) their concurrency in space, time and frequency
- 3. Manage secondary use among AUs to achieve high wireless capacity
- 4. Implement a monitoring & enforcement framework to refine above functions

Choice of principles instantiated and balance of associated tradeoffs impacts SAS design:

• Dictates resulting complexity, scalability, deployability & attractiveness for business investment

PR1, PR4: Primary Spectrum Availability Estimation

- Split SAS for security, scalability and flexible business and deployment models
 - <u>Federal SAS</u>: Interfaces to incumbents, computes exclusion zones and supplies availability info
 - <u>Commercial SAS</u>: Interfaces to secondary user AU networks (e.g. Radio Access Networks (RANs)
- Secure access: FSAS *knows full* incumbent info but provides a distorted version to CSAS

3 | FCC 3.5 GHz SAS Workshop | MMB || COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

PR2: Type of Secondary AU Tiers Impacts SAS Design

- □ **Incremental:** GAA and PL separated in frequency
- □ Independent business & monetization models
- Two 2-tier SAS with differing complexity

- **Hybrid:** GAA & PL devices co-exist in portion
- Greater dynamicity must be handled
- Allows greater experimentation with "shared use" and fail proof
- PCAST model: Greatest access fairness and spectrum utilization
- Most dynamicity
- Most complex and risky in near-term

4 | FCC 3.5 GHz SAS Workshop | MMB || COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

······ Alcatel·Lucent 🥢

PR2, PR3, PR4: DREAM, Active Management of AUs and related functions

Dynamic Radio Environment Activity Mapping (DREAM)

□ **Channel ranking:** CSAS aggregates measurements from GAA networks to assess quality and rank channels.

Provides to AU s a ranked list instead of static list

- Secondary Channel management: Allocate channels to AUs in GAA mode to minimize aggregate interference to primary and maximize secondary capacity
- Schedule DREAM sensing: Manage sensing functions in the AUs to minimize sensing overhead
- Detection of violation of primary rights: DREAM can detect violation of primary rights
- Monetization of channel access: Implement priced transaction or auction to monetize Protected Access Licenses, allowing licenses to be smaller in time and spatial scope

\rightarrow Adding these functions adds more complexity and closed loop information flows

A Candidate Architecture for 3.5 GHz Ecosystem

- □ Four new entities
- Hierarchy to scale information handling

Supports old and new business models

Handles all forms access tiers

Alcatel · Lucent