Inter-service Interference (ISIX) Methodology Workshop

OET

February 21, 2014

Workshop Agenda

1:00pm	Opening remarks
1:05pm	Overview of Public Notice Introduction to Market Variation Presentation of an Inter-service Interference Methodology • Predicting Coverage & Interference • Effects of Different Bandwidths Between Television and Wireless • Propagation Modeling Parameters, Including Clutter Implementing the Methodology Using TVStudy Potential Application of the Methodology to Incentive Auction
2:15pm	Discussion and Moderated Q&A
3:00pm	Adjourn

I. OVERVIEW OF PUBLIC NOTICE

Market Variation

- Ideally: Same spectrum repurposed in every market
- Realistically: In a voluntary auction, could be some variation and spectrum recovery; avoid "Least Common Denominator"
- <u>Inter-service interference</u> can result from wireless operations co- or adjacent-channel to a TV broadcast station operating in a nearby market, and vice-versa
- Objective: Develop a methodology that:
 - Protects broadcasters against harmful interference
 - Informs wireless bidders about spectrum environment
 - Ensures efficient use of the spectrum

 Some commenters suggested establishing a predefined separation distance – with distances ranging from 100 to 500 km

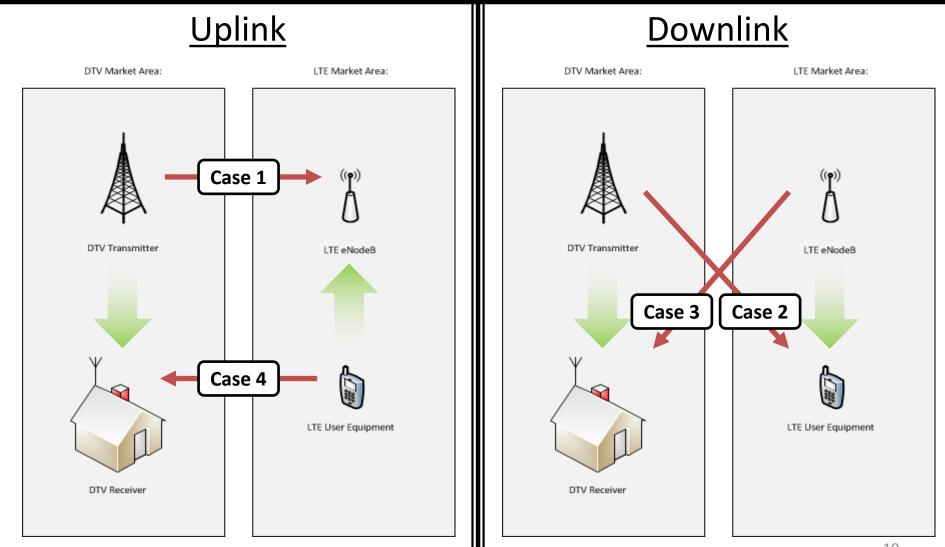
- OET developed more flexible methodology for managing inter-service interference that provides greater granularity in predicting possible interference
 - takes into account factors such as specific technical characteristics of TV stations, typical wireless systems, radio propagation factors, terrain variability, etc.
- Methodology presented is intended to yield greater spectral efficiency with less likelihood of leaving large geographic areas unavailable for wireless services

• PN released to expand record and solicit comment on the OET methodology

- OET staff is presenting a possible methodology for managing inter-service interference
- PN and today's presentation primarily focus on the technical aspects of the methodology—policy related issues remain outstanding and will be addressed later at the appropriate time

PN solicits comments on:

 whether methodology is more accurate than a generic separation distance or if other approaches should be considered OFT

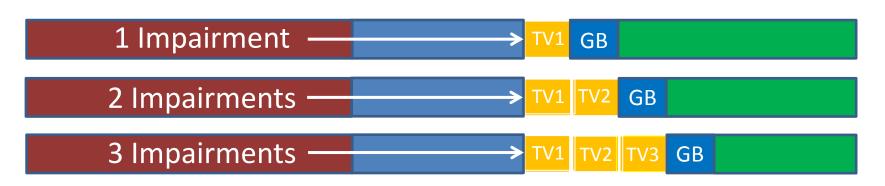

- whether assumptions and standards used in methodology are appropriate
- the use of specific clutter values
- the use of uniform distribution of wireless base stations for one of the interference scenarios
- projected interference threshold to DTV and use of proxy channels for analysis

II. HOW MARKET VARIATION ARISES

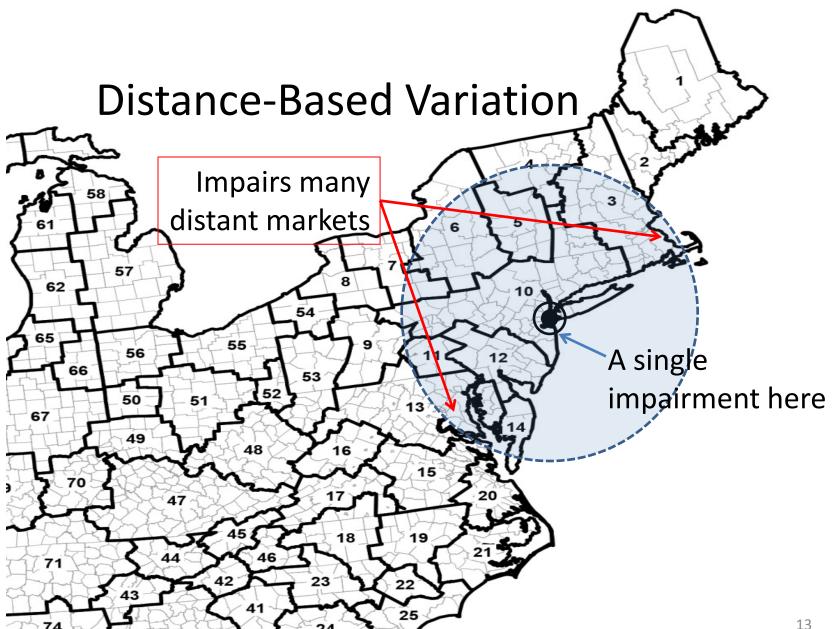
Market Variation and Impairment

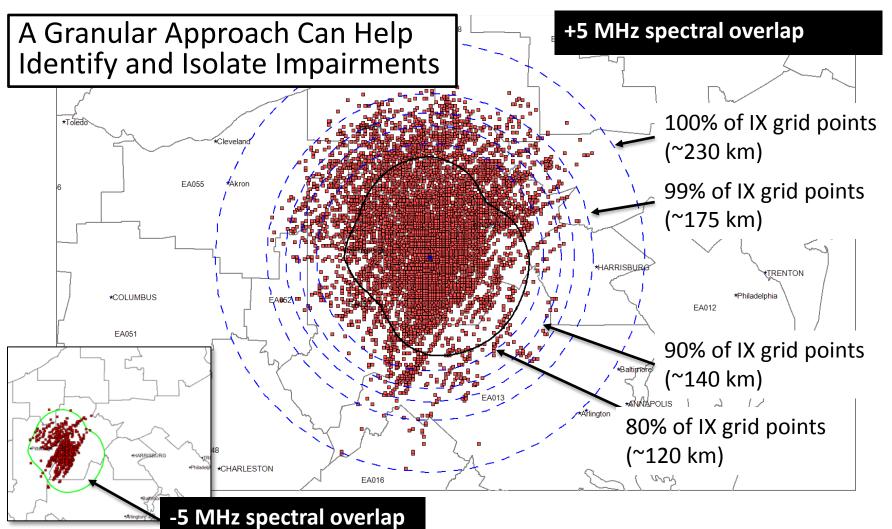
- Some frequencies have both TV and wireless
 - Must be geographically separated
 - IX areas will not align with license areas
- Amount of IX (area or population) can define "impaired" wireless market
 - Degree of impairment
 - Technology may help overcome impairments

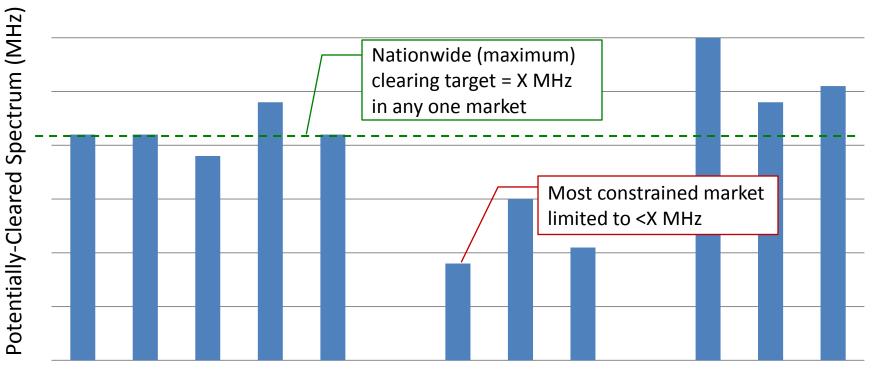
Potential Interference Cases



Geographic Variation


- Depending upon band plan adopted, could fix amount of downlink spectrum nationwide
 - Allows for uniform filters in all UE devices, reducing cost and promoting interoperability
 - Allows for variation in amount of uplink spectrum to accommodate different amounts of cleared spectrum
- Produces asymmetric uplink/downlink spectrum
 - Markets with less clearing have lower Uplink/Downlink spectrum ratio


OFT



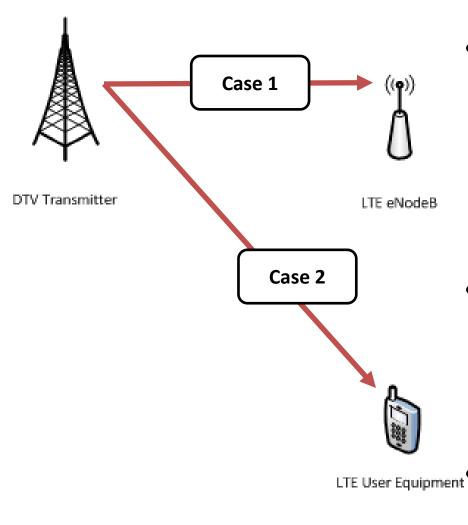
Spectrum cleared in most markets

Spectrum Clearing Target vs. Constrained Markets

Unconstrained Major Markets

Constrained Markets

Rural Markets

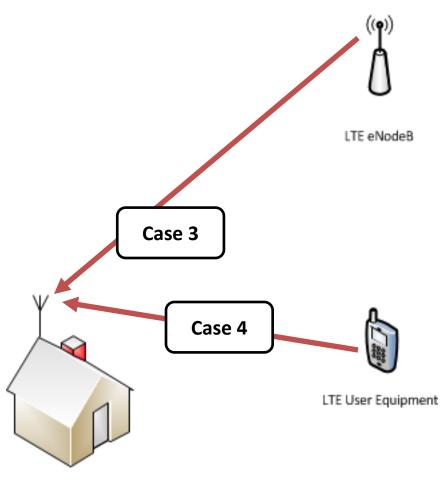

OET

Truth Table Approach

- Cell-By-Cell *TVStudy* Results are very detailed
 - Typical full-power DTV station covers about 7,400 cells
- Cells having Zero population might be ignored
- Cells having "D" below a defined threshold can be ignored
- Not all cells need be considered
- The detailed results for relevant cells can be be simplified into an indexed truth table, where for each cell:
 - Interference-free Coverage = 1
 - Interference = 0
- An index is needed to provide location (county) and population references

III. OET ISIX METHODOLOGY OVERVIEW

IX to Wireless



Cases 1 & 2: DTV TX into Wireless RX

- Longley-Rice Propagation Methodology
 - For large distances (100s of kilometers)
 - DTV transmitter specifications known
 - Terrain-specific path losses
 - Receiver heights can be adjusted
 - 30 meters for LTF eNodeB
 - 1.5 meters for UF
 - Consider clutter loss for Case 2 (UE)
- Statistical Analysis of DTV Path Losses
 - Consider a number of cases/paths
 - Vary by market and population
 - Identify repacked TV stations that contribute to post-auction market variation

Same nationwide grid as DTV-to-DTV IX analysis

IX to DTV

DTV Receiver

Case 3: Wireless TX into DTV RX

- Longley-Rice Propagation Methodology
 - For large distances (100s of kilometers)
 - Future wireless TX specifications unknown
 - Uniform distribution (10 km) over market
 - Assume Part 27 power and OOBE limits
 - Terrain-specific path losses
 - DTV receiver height fixed at 30 feet
 - Consider clutter loss for both cases
- Statistical Analysis of Wireless Path Losses
 - Consider a number of cases/paths
 - Vary by market and population
 - Identify wireless license areas subject to postauction market variation requirements
- Case 4 May Not Need to be Considered
 - Distances likely a few kilometers
 - IX distance subsumed by other cases

TX Specifications

• DTV

- Operating data from FCC CDBS
 - Power, height, and antenna pattern
 - Geographic coordinates (NAD-27)
- Wireless
 - Assumed (typical) data taken from
 - 3GPP technical specifications
 - Manufacturer technical data
 - Locations distributed within license area

DTV station operating specifications

- Extracted from CDBS, or
- Inferred from OET Bulletin No. 69

Parameter	Value	Comment
Emission BW (MHz)	6	TV channel.
Effective Radiated Power (ERP)	(CDBS)	
Azimuth Relative Field Pattern	(CDBS)	
Elevation Relative Field Pattern	(OET-69/CDBS)	Pattern data from CDBS can be used when available.
Geographic Coordinates, NAD-27	(CDBS)	Coordinate datum must be consistent with terrain and other data.
HG(1) (m)	(CDBS)	Transmit antenna height above ground.

Wireless eNodeB Operating Specifications

Parameter	Value	Comment						
Emission BW (MHz)	5	Wireless block.						
ERP (W)	720	Assumes 1.2 kW ERP in 10 MHz channel plus 0.8 dB.* Assumes two 40 W power amplifiers, 15 dBi antenna gain, and 1 dB cable loss.						
ERP (dBm)	58.6	$= 10\log_{10}(ERP) + 30.$						
G (dBd)	12.8	Assumes 15 dBi - 2.2 (approximate dipole gain).						
L (dB)	1	Assumed line loss.						
Az Relative Field Pattern	Omni							
Elv Relative Field Pattern	(OET-69)	Similar to many wireless antenna patterns						
Geographic Coords, NAD-27	Uniform, 10 km grid	Hypothetical wireless base stations, distributed across each wireless license area. Note that <i>TVStudy</i> expects site coordinates in NAD-27.						
HG(1) (m)	30	Transmit antenna height above ground.						
* ERP of 720 W = 120 W/MHz x 6 MHz. This adds an additional 0.8 dB of interference power in the wireless block to simulate operations of wireless base stations transmitting across contiguous adjacent wireless blocks affecting one 6 MHz TV channel.								

Wireless UE Operating Specifications

Parameter	Value	Comment				
Emission BW (MHz)	5	Wireless block.				
ERP (W)	0.12	EIRP = 200 mW; 0 dB loss + 0 dBi gain. See 3GPP TS 36.101, § 6.3.2.				
ERP (dBm)	58.6	$= 10\log_{10}(ERP) + 30.$				
G (dBd)	-2.2	Assumes 0 dBi - 2.2 (approximate dipole gain).				
L (dB)	0	Assumed line loss.				
HG(1) (m)	1.5	Transmit antenna height above ground.				

NOTE: Wireless user equipment transmitter assumptions may not necessarily be considered, since preliminary predictions involve distances of less than a few kilometers. The Longley-Rice propagation model may not be suitable for such short distances. See Daniel, W. and Wong, H., "Propagation in Suburban Areas at Distances less than Ten Miles," FCC/OET TM 91-1, Federal Communications Commission, Office of Engineering and Technology, January 25, 1991.

Receiver Performance

- Television
 - Taken from FCC and other sources
 - DTV planning factors
 - ATSC technical specifications
 - OET Bulletin No. 69 and FCC rules
- Wireless
 - o Taken from
 - 3GPP technical specifications
 - Manufacturer technical data

DTV Planning Factors

		Low VHF	High VHF	UHF
Planning Factor	Symbol	(2-6)	(7-13)	(14-69)
Geometric Mean Frequency (MHz)	F	69	194	615
Dipole Factor (dBm-dBu)	К _d	111.8	120.8	130.8
Thermal Noise (dBm)	N _t	-106.2	-106.2	-106.2
Antenna Gain (dBd)	G	4 *	6 *	10 *
Antenna Front-to-back ratio (dB)	F/B	10	12	14
Downlead line loss	L	1	2	4
System noise figure (dB)	N _s	10	10	7
Required receiver S/N ratio (dB)	S/N	15.2**	15.2**	15.2**
Time variability factor (90% availability) (dB)	dT	0***	0***	0***
Location variability factor (50% availability) (dB)	dL	0	0	0

* Antenna placement is assumed outdoors at 10 meters (~30 feet).

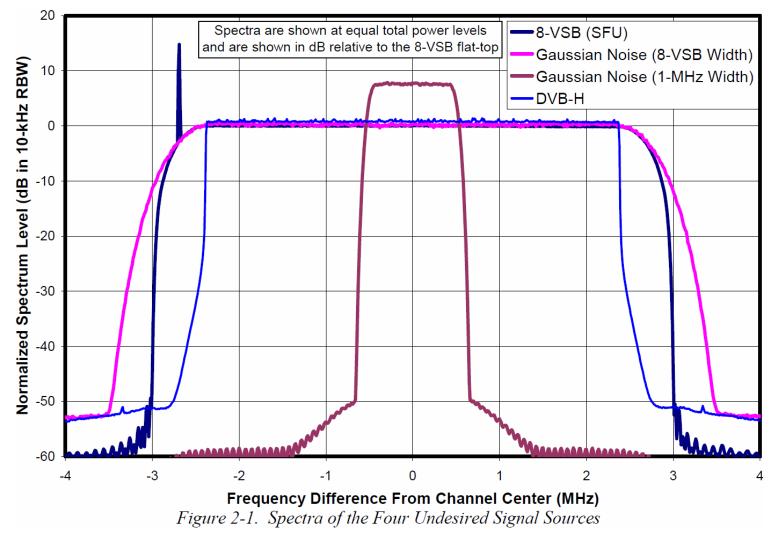
** S/N value from DTV Sixth Report and Order and OET Bulleting No. 69 is 15 dB, which was rounded from 15.19 dB in Table 5.1 of FCC Advisory Committee on Advanced TV Service (ACATS) Final Technical Report (1995).
*** 90% Time variability is F(50,10) minus F(50,50), taken from § 73.699. This factor is a function of the distance between the transmitting and receiving antennas.

DTV Receiver

Parameter	Value	Comment
Receive Power, P _r (dBm)	-84	$P_{r} = N_{t} + N_{s} + S/N$, where S/N = 15.2 dB.
		For UHF channels: P _r = -106.2 + 7 + 15.2 = -84.0 dBm.
Dipole factor, K _d (dBm-dBµV/m)	130.8	OET Bulletin No. 69, Table 3.
Antenna gain, G (dBd)	10	DTV Planning Factor.
Downlead loss, L (dB)	4	DTV Planning Factor.
Receiver BW (MHz)	6	TV channel.
Thermal noise, N _t (dBm)	-106.2	-174 (dBm/Hz) + 10log ₁₀ (6 MHz).
Receiver Noise Figure, N _s (dB)	7	DTV Planning Factor.
On-tune rejection, OTR (dB)	0	For wireless into DTV, OTR = 0 because the transmit signal bandwidth is assumed to be smaller than the receiver bandwidth.
Threshold field strength for service, FS _{th} (dBµV/m)	40.8	$FS_{th} = P_r + L + K_d - G = -84 + 4 + 130.8 - 10$

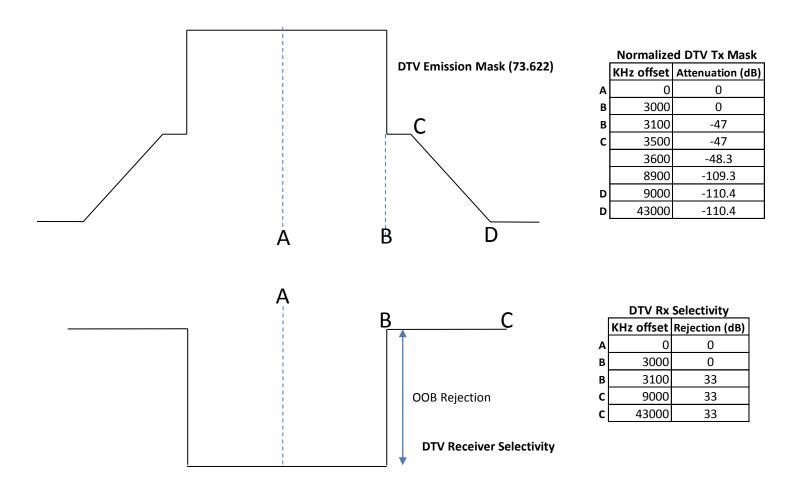
Wireless Base Station Receiver

Parameter	Value	Comment
P _r (dBm)	-101.5	Ref sensitivity, per 3GPP Specification 36.104 § 7.2.
K _d (dBm-dBμV/m)	130.8	Dipole Factor, OET Bulletin No. 69, Table 3.
G (dBd)	13.8	G (dBd) = 12.8 dBd + G_{div} - G_{horiz} . G_{div} is receive antenna
		diversity gain, assumed to be 3 dB, and G _{horiz} is additional
		antenna discrimination due to downtilt below the radio
		horizon, assumed to be 2 dB.
L (dB)	1	Assumed line loss.
Receiver BW (MHz)	5	For bandwidths (BWs) \geq 5 MHz, the reference sensitivity
		level is measured in accord with the 3GPP Technical
		Specification 36.104 using 25 consecutive resource blocks,
		corresponding to a channel bandwidth of 4.5 MHz.
Thermal noise, N _t (dBm)	-107.5	= -174 (dBm/Hz) + 10log ₁₀ (4.5 MHz).
N _e (dB)	6	Effective noise figure (derived).
OTR (dB)	0.8	For TV into wireless, OTR = $10\log_{10}(6/5) = 0.8$ dB. Using
		typical 3 dB transmit signal bandwidths, 10log ₁₀ (5.38/4.5) is
		also approximately 0.8 dB.
Minimum field strength	17.3	MFS = P _r + L + K _d - G + OTR = -101.5 dBm + 1 + 130.8 - 13.8 +
for service, MFS (dBµV/m)		0.8 = 17.3 dBμV/m.

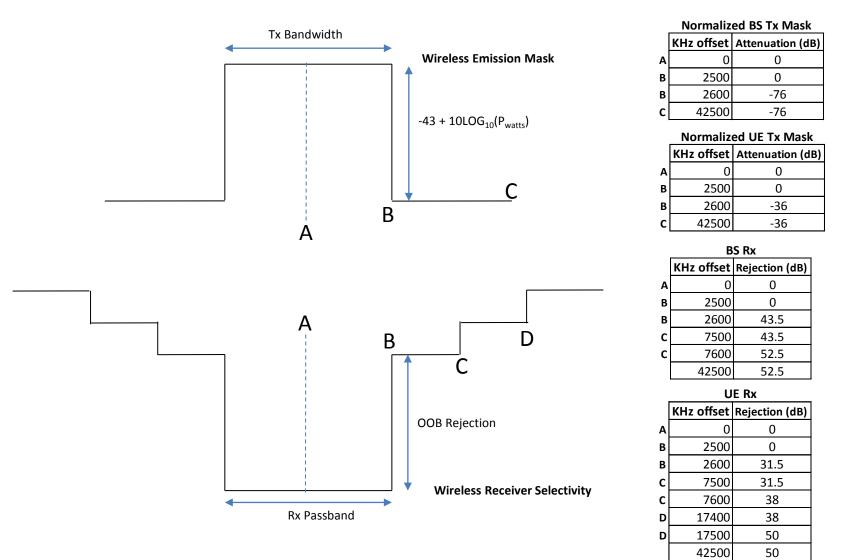

Wireless User Equipment Receiver

Parameter	Value	Comment
P _r (dBm)	-100	Ref sensitivity level, per 3GPP Specification 36.101 § 7.3.
K _d (dBm-dBμV/m)	130.8	Dipole Factor, OET Bulletin No. 69, Table 3.
G (dBd)	-2.2	Assumes 0 dBi - 2.2 (approximate dipole gain).
L (dB)	0	Assumed line loss.
Receiver BW (MHz)	5	For bandwidths (BWs) \geq 5 MHz, the reference sensitivity
		level is measured in accord with the 3GPP Technical
		Specification 36.104 using 25 consecutive resource blocks,
		corresponding to a channel bandwidth of 4.5 MHz.
Thermal noise, N _t (dBm)	-107.5	= -174 (dBm/Hz) + 10log ₁₀ (4.5 MHz).
N _e (dB)	7.5	Effective noise figure (derived).
OTR (dB)	0.8	For TV into wireless, OTR = $10\log_{10}(6/5) = 0.8$ dB. Using
		typical 3 dB transmit signal bandwidths, 10log ₁₀ (5.38/4.5) is
		also approximately 0.8 dB.
Minimum field strength	33.8	$MFS = P_r + L + K_d - G + OTR = -100 \text{ dBm} + 0 + 130.8 - (-2.2) + $
to receive service, MFS		$0.8 = dB\mu V/m$.
(dBµV/m)		28

Off-Frequency Rejection (OFR)


- TV channels and wireless blocks will not align
- OFR added to threshold field strength as spectral overlap decreases from co-channel condition
- Incremental decrease in sensitivity accounts for roll-off of both transmit and receive filters to adjacent-channel values
- Amount of "noise" in the pass-band of the victim receiver

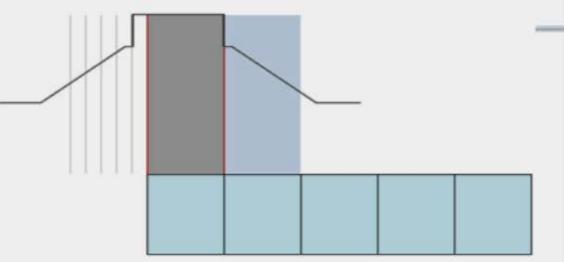
Gaussian Noise Equivalence



Source: Stephen R. Martin, "Interference Rejection Thresholds of Consumer Digital Television Receivers Available in 2005 and 2006," <u>FCC/OET Report 07-TR-1003</u>, March 30, 2007.

DTV TX and RX Assumptions

LTE Assumptions



Off-Frequency Rejection (OFR)

- Use NTIA's MSAM Suite for Spectrum Management
 - Frequency Dependent Rejection (FDR) program
 - <u>http://ntiacsd.ntia.doc.gov/msam/</u>
- Example:

 $DTV \rightarrow Wireless$

• Start with co-channel minimum field strength threshold value for BS receiver (see slide 27)

Spectral Overlap (MHz)	5	4	3	2	1	0	-1	-2	-3	-4	-5
DTV Field Strength into Wireless Uplink (dBµV/m)	17.3	18.2	19.5	21.2	24.0	34.4	61.4	62.5	63.7	65.5	68.6
	Î					Û					

RE

Off-Frequency Rejection (OFR)

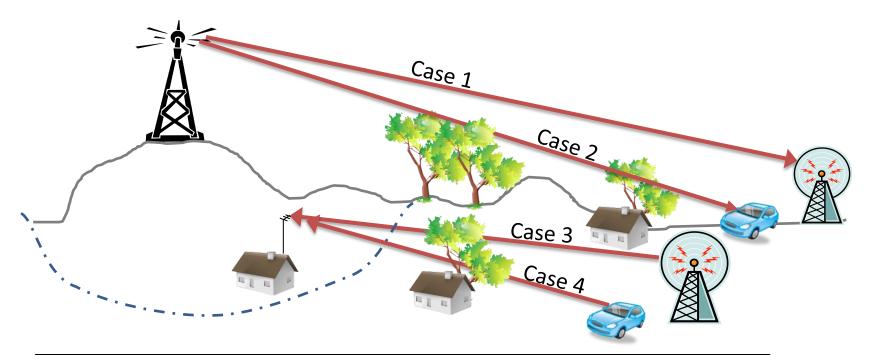
• DTV \rightarrow Wireless

Overlap in MHz	5	4	3	2	1	0	-1	-2	-3	-4	-5
DTV into Uplink	0	0.9	2.2	3.9	6.7	17.1	44.1	45.2	46.4	48.2	51.3
DTV into Downlink	0	0.9	2.2	3.8	6.6	16.9	32	32.8	33.8	35.1	37

• Wireless \rightarrow DTV

Overlap in MHz	5	4	3	2	1	0	-1	-2	-3	-4	-5
Downlink into DTV	0	0.9	2.2	3.9	6.7	17.0	33	33	33	33	33
Uplink into DTV	0	0.9	2.2	3.8	6.6	16.9	31	31	31	31	31

Off-Frequency Rejection (OFR)


• Minimum Field Strength, DTV \rightarrow Wireless

Overlap in MHz	5	4	3	2	1	0	-1	-2	-3	-4	-5
DTV into Uplink	17.3	18.2	19.5	21.2	24.0	34.4	61.4	62.5	63.7	65.5	68.6
DTV into Downlink	33.8	34.7	36.0	37.6	40.4	50.7	65.8	66.6	67.6	68.9	70.8

• Minimum D/U Ratio, Wireless \rightarrow DTV

Overlap in MHz	5	4	3	2	1	0	-1 to -5
Downlink into DTV	15.0 + α	14.1 + α	12.8 + α	11.1 + α	8.3 + α	-2.0 + α	-18 + α
Uplink into DTV	15.0 + α	14.1 + α	12.8 + α	11.2 + α	8.4 + α	-1.9 + α	-16 + α
α = 10log10[1.0/(1.0 - 10-x/10)], where x = S/N - 15.19 dB. See 47 C.F.R. § 73.623.							

ISIX Scenarios versus Clutter

Interference Case	Transmitter Antenna Height (m)	Receive Antenna Height (m, AGL)	Apply Clutter?
Case 1: TV into Uplink:	Value from CDBS (AMSL)	30	No
Case 2: TV into Downlink:	Value from CDBS (AMSL)	1.5	Yes
Case 3: Downlink into TV:	30 (AGL)	10	Yes, only for undesired path
Case 4: Uplink into TV:	1.5 (AGL)	10	Yes, only for undesired path

37

Derivation of Clutter Factors

Case 3 Factors: eNodeB to DTV

		Clutter Loss (dB) (to be subtracted from calculated field strength)		
Clutter	Clutter	Channels	Channels	
Category	Category Description	14-36	38-51	
1	Open land	4	5	
2	Agricultural	5	6	
3	Rangeland	3	6	
4	Water	0	0	
5	Forest land	5	8	
6	Wetland	0	0	
7	Residential	5	7	
8	Mixed Urban / Buildings	6	6	
9	Commercial / Industrial	5	6	
10	Snow and Ice	0	0	

Taken from OET Bulletin No. 73 "The ILLR Computer Program for Predicting Digital Television Signal Strengths at Individual Locations"

Case 2 and Case 4 Factors: Cases involving UE

		Clutter Loss (dB) (to be subtracted from calculated field strength)	
Clutter	Clutter	Channels	Channels
Category	Category Description	14-36	38-51
1	Open land	6	7
2	Agricultural	5	6
3	Rangeland	3	6
4	Water	0	0
5	Forest land	10	13
6	Wetland	0	0
7	Residential	11	13
8	Mixed Urban / Buildings	13	13
9	Commercial / Industrial	12	13
10	Snow and Ice	0	0

Calculated clutter factor based on ITU P.452 height gain equations normalized to OET-73 factors

Clutter Category Mapping

TVStudy allows for the definition of 10 clutter categories while the NLCD database has 16 categories

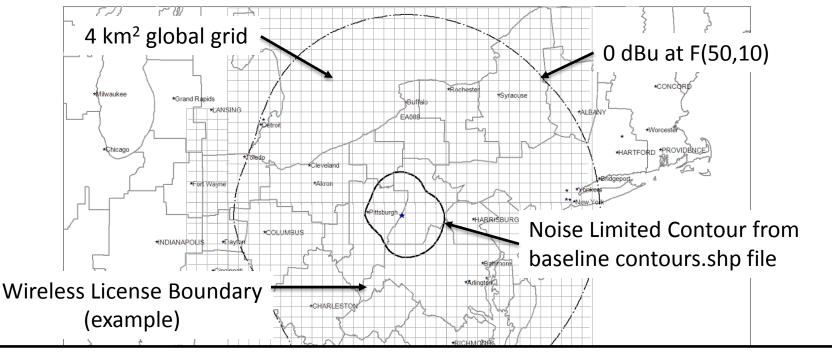
NLCD		TVStudy Clutter	
Classification		Category	TVStudy Clutter
Number	NLCD Classification Description	Mapping	Category Description
11	Water	4	Water
12	Perennial Ice Snow	10	Snow and Ice
21	Developed, Open Space	7	Residential
22	Developed, low intensity	7	Residential
23	Developed, Medium Intensity	9	Commercial /
			Industrial
24	Developed High Intensity	8	Mixed urban /
			buildings
31	Bare Rock / Sand / Clay	1	Open Land
41	Deciduous Forest	5	Forest Land
42	Evergreen Forest	5	Forest Land
43	Mixed Forest	5	Forest Land
52	Shrub/Scrub	3	Rangeland
71	Grasslands/Herbaceous	3	Rangeland
81	Pasture/Hay	2	Agricultural
82	Row Crops	2	Agricultural
90	Woody Wetlands	5	Forest land
95	Emergent Herbaceous Wetlands	6	Wetland
90	Row Crops Woody Wetlands	2 5	Agricultural Forest land

IV: Using *TVStudy* for Inter-Service Interference Studies

Analysis Steps

- Baseline of TV Noise Limited Service Contours
- Set up *TVStudy* for ISIX runs
 - Create study and set study parameters
 - Create xml scenario (Appendix I of TVStudy manual)
- Run *TVStudy* to obtain detailed cell-level output – tvstudy.cel, points.csv, contours.shp
- Extract pertinent detail from output
- Post-process data into format for use in constraint file generation

Baseline Noise-Limited Service Contours: contours.shp output


- In TVStudy, create a study using the "default" template
- Create a scenario by importing applicable TV stations from CDBS database
 - Set all stations as "desired only"
- Run study and save "contours.shp" file
 - This file shows the baseline noise limited contours for all TV stations

DTV \rightarrow Wireless: Scenario Creation

- Export XML scenario used to create baseline contours
- Edit xml scenario:
 - If final channel assignments are unknown, replicate all stations on a single "proxy" channel (*e.g.*, channel 36)
 - Run all stations as "Desired" only. Although in this case the TV signal is "undesired" we are only interested in the field strength from the TV at each grid cell

	<pre><scenario name="AllStations"></scenario></pre>						
	<pre><description>Case 1 and 2 Scenario</description></pre>						
	<source< td=""><td>DESIRED="true"</td><td>UNDESIRED="false"</td><td>LOCKED="true"</td><td>REPLICATE="36"</td><td>CDBS_ID="1541281"/></td></source<>	DESIRED="true"	UNDESIRED="false"	LOCKED="true"	REPLICATE="36"	CDBS_ID="1541281"/>	
	<source< td=""><td>DESIRED="true"</td><td>UNDESIRED="false"</td><td>LOCKED="true"</td><td>REPLICATE="36"</td><td>CDBS_ID="1499825"/></td></source<>	DESIRED="true"	UNDESIRED="false"	LOCKED="true"	REPLICATE="36"	CDBS_ID="1499825"/>	
	<source< td=""><td>DESIRED="true"</td><td>UNDESIRED="false"</td><td>LOCKED="true"</td><td>REPLICATE="36"</td><td>CDBS_ID="1414833"/></td></source<>	DESIRED="true"	UNDESIRED="false"	LOCKED="true"	REPLICATE="36"	CDBS_ID="1414833"/>	
	<source< td=""><td>DESIRED="true"</td><td>UNDESIRED="false"</td><td>LOCKED="true"</td><td>REPLICATE="36"</td><td>CDBS_ID="1504605"/></td></source<>	DESIRED="true"	UNDESIRED="false"	LOCKED="true"	REPLICATE="36"	CDBS_ID="1504605"/>	
	<source< td=""><td>DESIRED="true"</td><td>UNDESIRED="false"</td><td>LOCKED="true"</td><td>REPLICATE="36"</td><td>CDBS_ID="1333036"/></td></source<>	DESIRED="true"	UNDESIRED="false"	LOCKED="true"	REPLICATE="36"	CDBS_ID="1333036"/>	
	<source< td=""><td>DESIRED="true"</td><td>UNDESIRED="false"</td><td>LOCKED="true"</td><td>REPLICATE="36"</td><td>CDBS_ID="1561877"/></td></source<>	DESIRED="true"	UNDESIRED="false"	LOCKED="true"	REPLICATE="36"	CDBS_ID="1561877"/>	

DTV \rightarrow Wireless: Calculation Contour

Cases 1 and 2 require *TVStudy* contours large enough to ensure that all locations are considered where DTV field strength reaches the wireless co-channel interference thresholds, which are lower than the DTV service thresholds in OET Bulletin 69, Table 2

DTV -> Wireless: Setup of Study TVStudy Parameters for Cases 1 & 2

- Contour
 - 0 dBu
 - F(50,10)
- Receive Antenna Pattern
 - Front-to-Back ratio = 0 dB (omnidirectional antenna)
- Clutter
 - Turn on clutter but set all categories to 0 dB.

- Pathloss Calculations
 - Ignore Longley-Rice errors
 - Use pathloss as returned by model
 - Sample profile at 10 pts per kilometer
 - Receive Antenna height
 - 30 m Case 1
 - 1.5 m Case 2
 - F(50,50) propagation statistics, broadcast mode

DTV → Wireless: Processing the Data Detailed tvstudy.cel output

[sources]

<SourceKey>, <DesFlag>, <UndFlag>, <CountryKey>, <ServiceType>, <Channel>, <ServiceLevel>,.....

[endsources]

[grid]

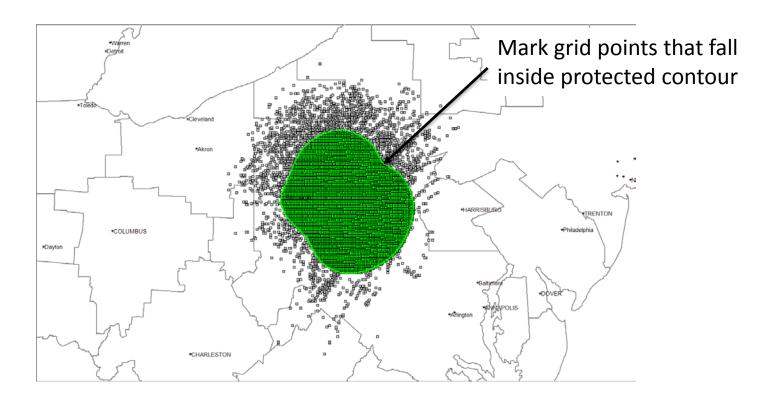
<LatIdxSouth>, <LonIdxEast>, <LatIdxNorth>, <LonIdxWest>

[cell]

<LatIdx>, <LonIdx>

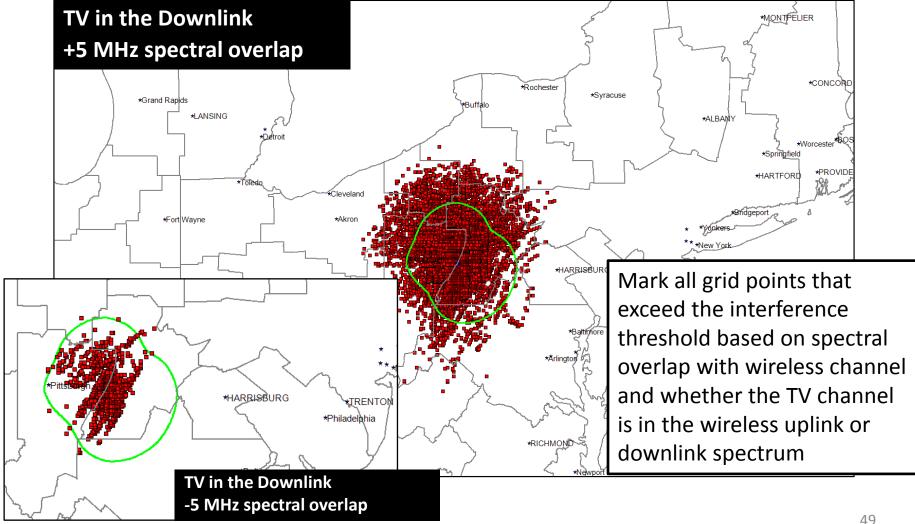
"P", <ptCountryKey>, <ptLat>, <ptLon>, <ptArea>, <ptPop>, <ptClutterCategory> "D", <DSrcKey>, <DFieldStrength>, <Bearing>, <KWXFlg>,<ServiceFlg>

[endcell]

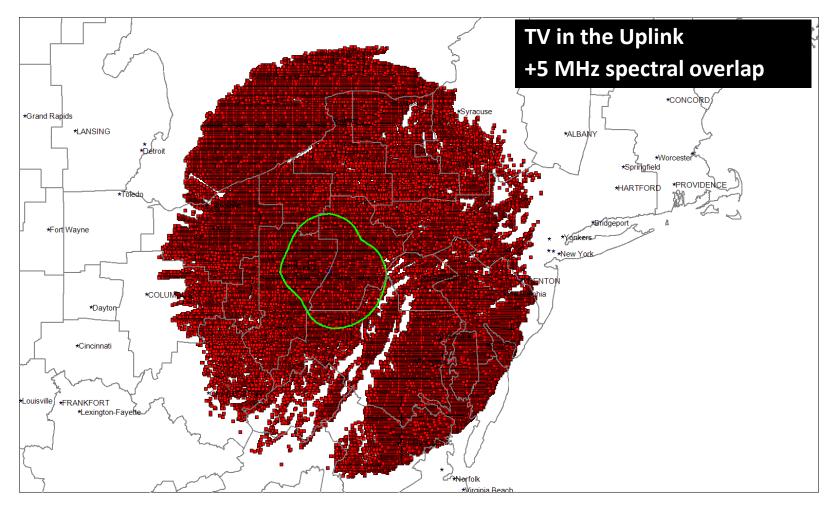

[endgrid] [endscenario]

- Read tvstudy.cel file
 line-by-line to "flatten" the grid
 cell information into simple CSV
 with one line for every grid point
 vs TV station
- For Case 2: Adjust "D" field strength for clutter based on Clutter Category at receive location
 - If final channel assignment is unknown, use "low UHF" values

DTV → Wireless: Processing the Data Detailed points.csv output


- This file is <u>not</u> the same "points.csv" file created when pair-wise studies are run (but it's similar)
 - LatIdx, LonIdx, ptCountryKey, ptKey, ptLat, ptLon, ptElev, ptArea, ptPop, ptClutterCategory
- This file is used to obtain the unique "point key" (ptKey) for each grid cell on the global
 - 4 km² grid
 - Provides a simple way to reference a grid cell without listing LatIdx + LonIdx + ptCountryKey

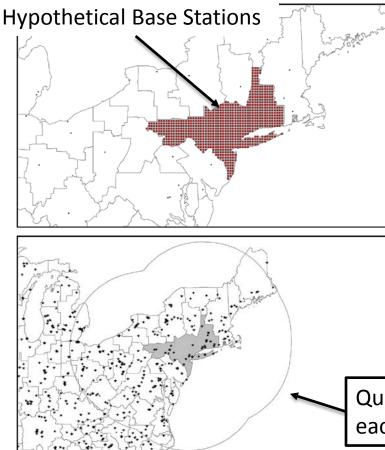
DTV → Wireless: Processing the Data Compare points.csv vs contours.shp



48

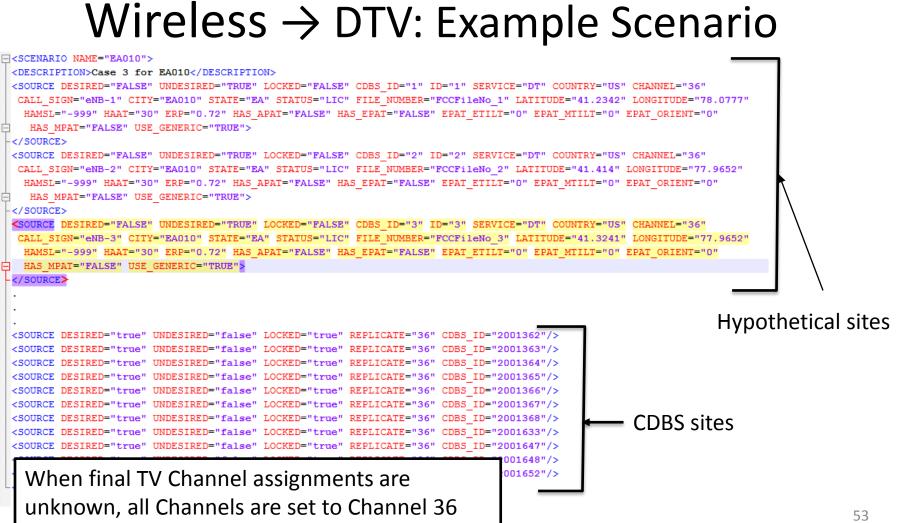
$DTV \rightarrow Wireless:$ Analyze Data for Each Spectral Overlap IX Threshold

DTV \rightarrow Wireless: Analyze Data for each Spectral Overlap IX Threshold



DTV → Wireless: Data used for Constraint Generation

COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
FACID	OL	UL_DL	InCon	IX	ptKey

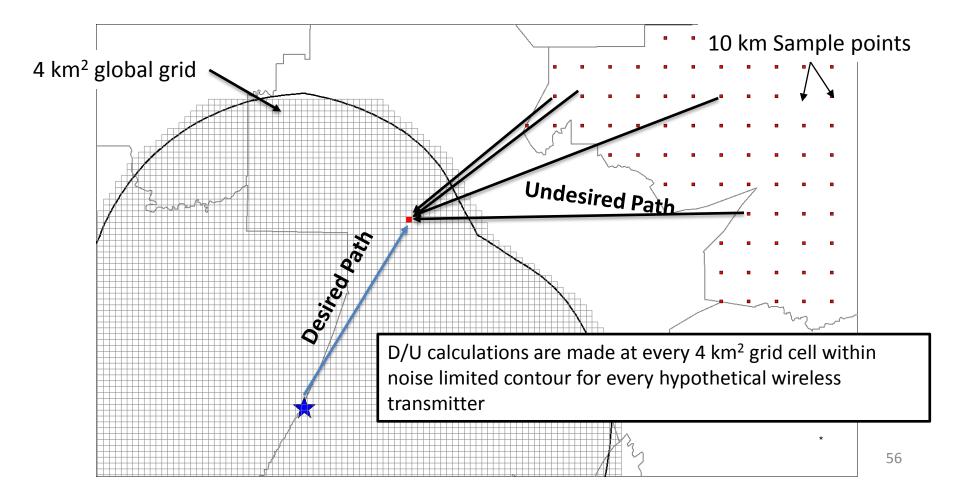

- FACID: facility ID for TV station
- OL: Spectral Overlap
- UL_DL: "U" for Case 1 and "D" for Case 2
- InCon: 0 if grid cell falls outside protected contour and 1 if grid cell falls inside
- IX: 0 if field strength from TV station is less than interference threshold; 1 if field strength is greater than interference threshold
- ptKey: unique identifier for grid cell point

Wireless \rightarrow DTV: Scenario Creation

- Create xml scenario with
 - "hypothetical" base stations
 spaced uniformly every 10
 km
 - Include TV stations within
 500 km of edge of each
 wireless market boundary

Query CDBS for all TV stations within 500 km of each wireless license boundary

Wireless \rightarrow DTV: Example Scenario


- When LOCKED="FALSE" in xml scenario
 - CDBS_ID and ID can be any number because the "hypothetical" site will not need to be referenced to actual site in the CDBS
 - STATE is any 2-character value
 - FILE_NUMBER is any character value
 - LATITUDE/LONGITUDE are NAD-27 values and can be in either DD MM SS H or decimal degrees
 - HAAT is 30 m for Case 3 and 1.5 m for Case 4
 - HAMSL set to -999 will cause TVStudy to calculate this value
 - ERP is to appropriate value for Case 3 or Case 4
 - USE_GENERIC = "TRUE" uses OET-69 generic antenna

Wireless → DTV: Running *TVStudy TVStudy* Settings Case 3 & 4

- Contour
 - Use OET Bulletin No. 69 values
- TX antenna pattern
 - Use Generic elevation pattern
 - Mirror generic patterns = TRUE
- Clutter
 - Turn on clutter but set all categories to 0 dB

- Pathloss Calculations
 - Ignore Longley-Rice error code
 - Use pathloss as returned by code
 - Receiver Antenna height
 - 10 m AGL Case 3 & 4
 - Minimum transmitter height = 1.5m (for Case 4)
 - F(50,90) propagation for desired signal (default)
 - F(50,10) propagation for undesired signal (default)

Wireless \rightarrow DTV: Calculations

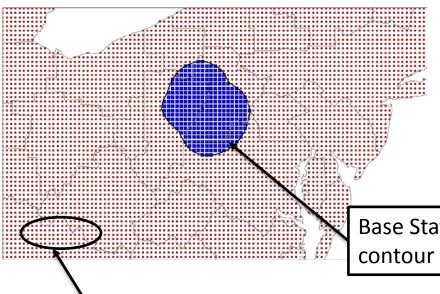
Wireless \rightarrow DTV: Processing the Data

Detailed tvstudy.cel output

[grid]

[cell] <LatIdx>, <LonIdx>

- "P", <ptCountryKey>, <ptLat>, <ptLon>, <ptArea>, <ptPop>, <ptClutterCategory>
- "D", <DSrcKey>, <DFieldStrength>, <Bearing>, <KWXFlg>, <ServiceFlg>
- "U", <USrcKey>, <UFieldStrength>, <Bearing>, <RxPatternAdj>, <KWXFlg>, <IXFlg>
- "DU", <DUratio>, <DUThreshold>, <DUadjustment>
- "U", <USrcKey>, <UFieldStrength>, <Bearing>, <RxPatternAdj>, <KWXFlg>, <IXFlg> "DU", <DUratio>, <DUThreshold>, <DUadjustment>

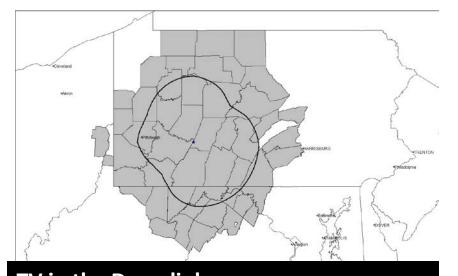

[endcell] [cell]

.

[endcell] [endgrid] [endscenario]

- Read tvstudy.cel file
 line-by-line to "flatten" the grid
 cell information into simple CSV
 with one line for every grid point
 vs TV station
 - Each line includes DU ratio, DU Threshold for TV station, and clutter category
- Adjust "DU" ratio for clutter value on the "U" path
 - If final channel assignment is unknown use "low UHF" values

Wireless \rightarrow DTV: Processing the Data Detailed tvstudy.cel output



 Compare location of each Hypothetical Base station to the TV station baseline contour to determine if Base Station Location is inside or outside contour

Base Station Points inside baseline contour are noted

Hypothetical Base Stations spaced every 10 km across entire Continental US

Wireless \rightarrow DTV: Analyze Data

TV in the Downlink +5 MHz spectral overlap

- Grey areas are marked because:
 - Hypothetical Base Station causes IX inside the Baseline contour

– OR –

 Hypothetical Base Station is inside Baseline contour

Wireless \rightarrow DTV: Data Provided for Constraint Generation

COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
FACID	OL	UL_DL	InCon2	IX	ptKey	<bndryid></bndryid>

- FACID: facility ID for TV station
- OL: Spectral Overlap
- UL_DL: "D" for Case 3
- InCon2: 0 if Base Station falls outside protected contour and 1 if Base Station falls inside
- IX: 0 if D/U ratio is greater than threshold, else 1
- ptKey: unique identifier for grid cell point
- <BndryID>: A boundary identifier (e.g. County FIPS code) Used to specify "restricted" boundary

V: Potential Application to the Incentive Auction

Presenters

In order of presentation:

Matthew Hussey, OET Robert Weller, OET Martin Doczkat, OET Barbara Pavón, OET Brett Tarnutzer, WTB matthew.hussey@fcc.gov robert.weller@fcc.gov martin.doczkat@fcc.gov barbara.pavon@fcc.gov brett.tarnutzer@fcc.gov