

FCC / OET Laboratory Division

October 2009

Overview

- SAR evaluation procedures / requirements
 - notebook/netbook computers
 - WiMax
 - HSPA & HSPA+
 - LTE
 - USB dongles & similar external peripheral transmitters
 - wireless wrist watch
 - wireless power charging/transfer applications
 - transmitters with low transmission duty factor
 - test reduction considerations
 - simultaneous transmission SAR evaluation
- SAR measurement system verification
 - SAR dipole calibration requirements
 - tissue equivalent media considerations head or body

Supplemental SAR Procedures for Notebook / Netbook Computers

Adding Supplemental Attachment to KDB 616217 May Need Changes to Exclusion List KDB 628591

Scope & Purpose

Scope

- covers notebooks, netbooks & laptops (not intended for UMPC devices)
 - including displays < 12" diagonal
 - for antennas in display & keyboard
 - for stand-alone & simultaneous transmission
 - including mixed mobile & portable exposure conditions
- excludes user plug-in external transmitters & antennas
 - follow KDB 447498, section 2 for USB dongles, CardBus, ExpressCard etc.

Purpose

- to supplement the earlier SAR procedures in
 - KDB 616217 that enable SAR test reduction
 - for antennas in laptop displays
 - KDB 447498 that provide flexibility to integrate transmitters and modules into host platforms
 - Section 2 & 3 (b) (ii): for generic transmission conditions
 - to streamline test and permissive change requirements
 - for the latest netbook/notebook type of host configurations

Individual Transmitters

- when SAR tests in initial approvals are based on the most conservative exposure configurations
 - required by the intended hosts & platforms
 - with respect to section 2 & 4 of KDB 447498
 - incorporating the approved configurations into qualified hosts
 - <u>normally do not require additional tests & certifications</u>
- when initial approvals are based on less or the least conservative exposure configurations; such as mobile exposure conditions
 - OEM integration options can become quite limited & restrictive
 - additional tests & certifications are usually necessary to incorporate new hosts or configurations
 - this option is highly undesirable and should be discouraged
 - it has been intended for early-on larger laptops; however, it is often applied to more recent complex hosts and has introduced many unnecessary permissive change and other filing issues

Individual Considerations

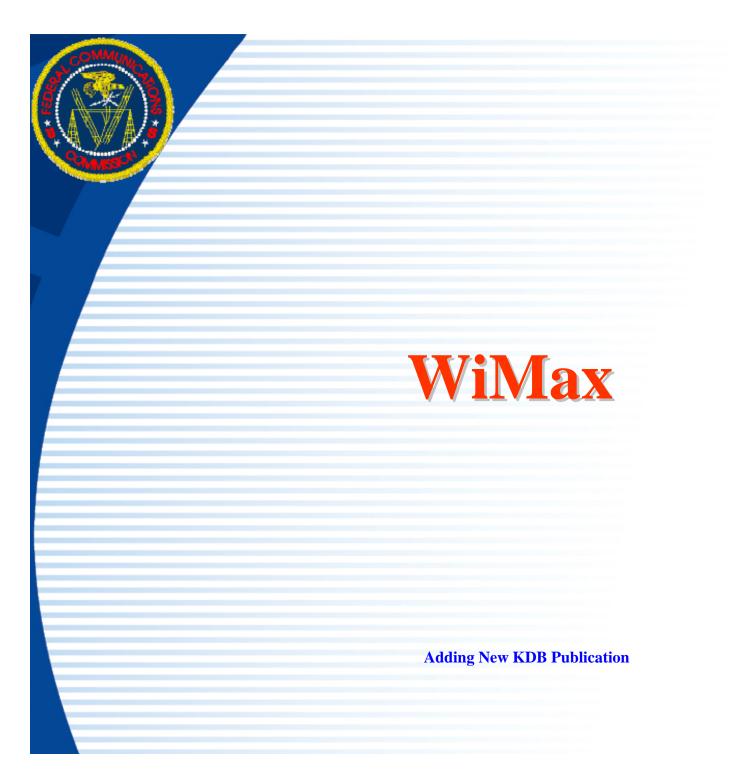
- to maintain continuity, the procedures in KDB 616217 continue to apply (to be phased out gradually or merged with other procedures later)
 - SAR tests not required when maximum average power $\leq 60/f_{(GHz)}$ mW
 - SAR test reduction applies for antennas $\geq (5+\frac{1}{2}\cdot n)$ cm from users
 - antennas must satisfy minimum user separation distance requirements
 - require further tests & approval for unqualified host configurations
- these notebook/netbook procedures should be applied
 - to supplement KDB 616217
 - for used in conjunction with section 2 of KDB 447498
 - to overcome issues for smaller notebooks/netbooks
- need to shift focus to the initial approval of individual transmitters
 - to emphasize tradeoffs between test conservativeness & OEM integration flexibility
 - to keep up with recent generation wireless products & technologies
 - in order to streamline test & certification requirements
 - to enable OEM integration and implementation flexibility

Simultaneous Considerations

- procedures and conditions in KDB 616217 or KDB 447498 section 3 & 8 (draft) may continue to apply (to be phased out or merged later)
 - to antennas on displays that meet the required minimum antennaantenna and antenna-user separation distance requirements
 - these cannot be mixed with the new netbook/notebook procedures
- focuses of new notebook/netbook procedures are
 - to consider the entire notebook/netbook or laptop computer
 - including antennas in both display and keyboard
 - including SAR exclusion criteria for mixed mobile & portable exposure conditions (displays < 10" do not meet mobile conditions)
 - to enable OEM flexibility to integrate simultaneous transmitting antenna configurations in the smaller netbook/notebook hosts
 - using the SAR/MPE of individual transmitters and test conditions
 - to streamline test & certification requirements for simultaneous transmission conditions

Simultaneous Configurations

- need to identify all possible combinations of simultaneous transmission conditions for intended host configurations
 - for antennas in both display and keyboard
 - transmitters operating through connectors & external card slots must be ≥ 5 cm from any simultaneous transmitting antennas
- document the details for each identified simultaneous transmission combinations
 - antenna types, transmission modes, operating configurations, maximum average output power etc.
 - antenna locations, antenna-antenna & antenna-user separations
 - restrictions required by the individual transmitter grants etc.
- specify the applicable antenna and host configurations
 - range of physical, mechanical and electrical variations supported by existing and new test results
- all these should be properly documented
 - in the original filing & permissive changes (Class I & II)

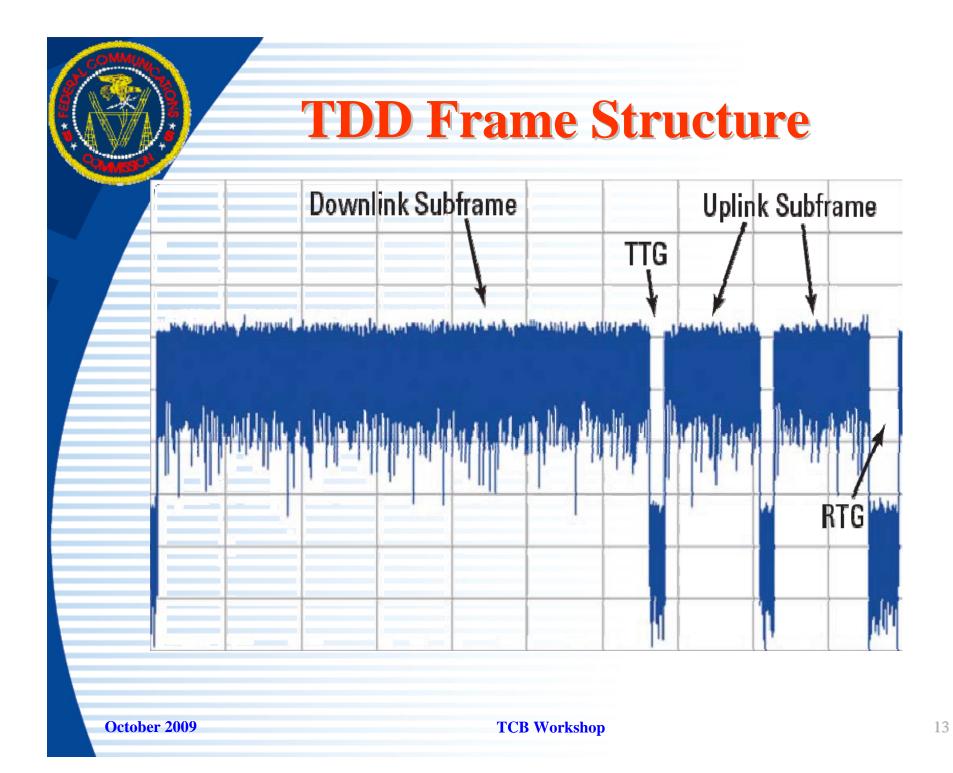

Simultaneous SAR Exclusion

each simultaneous transmitting transmitter/antenna must

- be certified with stand-alone SAR or with average power $\leq 60/f_{(GHz)}$ mW
- be installed with user separations at no closer than tested for certification
 - applies to SAR and MPE
- considering all simultaneous transmitting antennas in each host
 - if the Σ (highest SAR/1.6) + Σ (highest MPE/MPE limit) < 1; or
 - if the distances between the antennas that require SAR evaluation
 - considered a pair at a time, are $> 5 \cdot [(SAR_1 + SAR_2)/1.6]^{1.5}$ cm
 - round to the nearest cm
 - and the Σ (highest MPE/MPE limit) < 1
 - simultaneous transmission SAR/MPE exclusion applies, where
 - \sum requires highest SAR or MPE for each antenna
 - MPE does not apply to displays < 10" diagonal
 - Σ excludes antennas that do not require SAR evaluation
 - otherwise, submit KDB inquiry
 - to determine simultaneous transmission evaluation procedures and whether PBA or FCC filing applies
 - while awaiting more practical procedures from measurement standards

Documentation

- all combinations of simultaneous transmission and intended host configurations must be fully documented in the SAR report or Class I documentation, according to required procedures, to qualify for SAR exclusion
- grantees of individual transmitters must provide OEM integrators and distributors with specific instructions for qualified configurations to meet both stand-alone and simultaneous transmission RF exposure requirements
- OEM integrators and other third-parties must be able to adhere to the operating & installation requirements of all transmitters/antennas configured in each host
- with the required documentation, transmitter/antenna and host configurations that satisfy the new/supplemental notebook/netbook procedures and do not require additional SAR evaluation can be considered for Class I permissive change
- initial equipment certifications should focus on the flexibility to integrate transmitters/antennas into entire host platform or product line instead of focusing narrowly on individual hosts



Overview

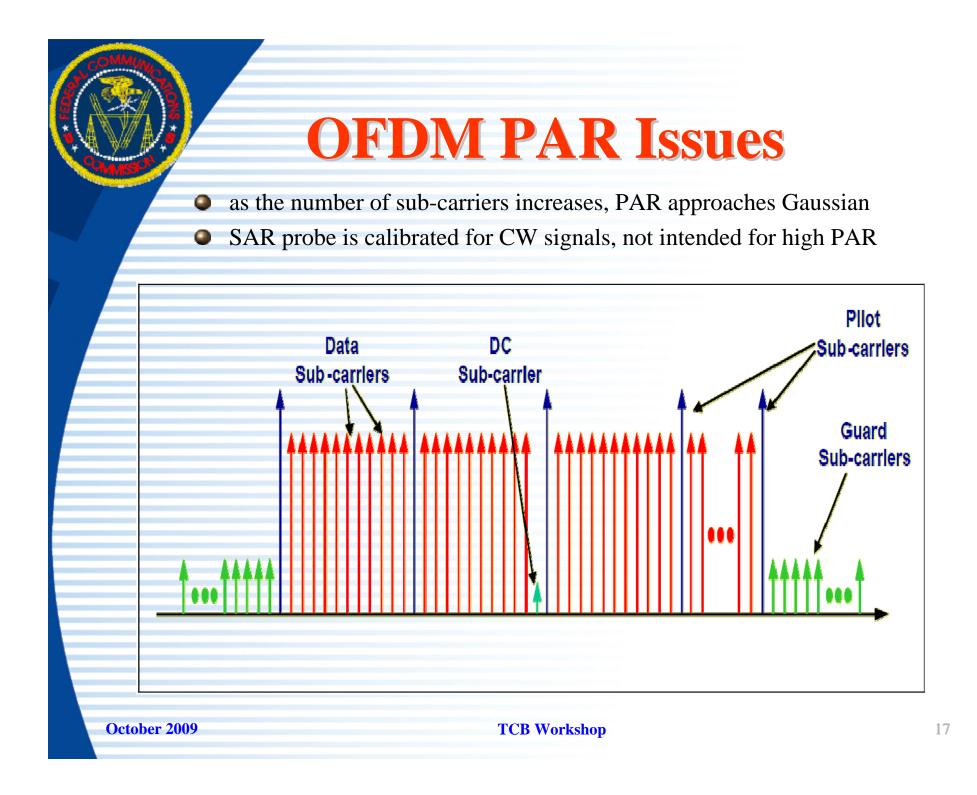
- preliminary WiMax SAR procedures have been provided through KDB/PBA inquiries since December 2008
 - received only one inquiry specific to the procedures
- these procedures are often not followed correctly for SAR testing and TCB review
 - issues are mostly related to WiMax implementation, test equipment requirements, device operating configurations and SAR measurement limitations

- need to identify and reiterate these issues
 - to facilitate transitioning the preliminary WiMax procedures to a KDB Publication

Common Testing Issues

- technology & implementation related considerations
 - DL:UL symbol ratios in TDD configurations
 - identify all combinations to determine highest transmit duty factor
 - also consider any chipset and/or wireless carrier restrictions
 - control symbol configurations
 - testing vs. normal operating requirements
 - test equipment & device operating configurations
 - using combinations of test software & vector signal generator or communication test set / protocol simulator
 - need stable signal at maximum output power suitable for making
 SAR measurements by existing systems
- SAR measurement limitations
 - SAR probes require test signals with periodic duty factor
 - SAR probes are not calibrated for signals with high peak-to-average power ratios such OFDM/OFDMA

TDD DL:UL Ratios

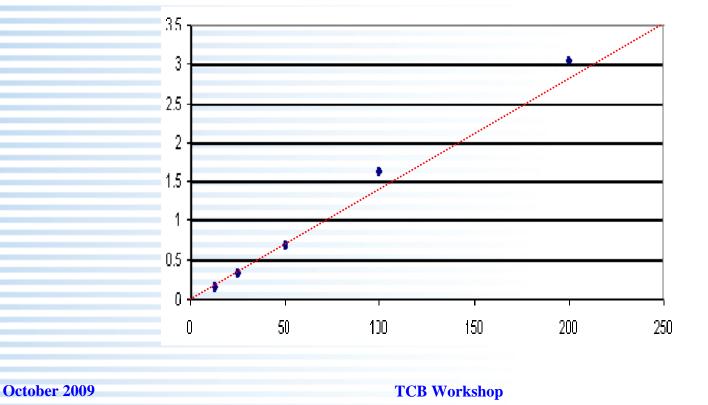

reported typical U.S. carrier configurations

- 5 & 10 MHz channel bandwidth in BRS band
 - certain carrier agreement may limit DL:UL ratio to 29:18
 - some chipsets may support higher ratios
 - 48 symbols per 5 ms frame
 - DL + UL + sub-frame gaps = 48 symbols
 - 3 control symbols in UL sub-frame
 - operating at reduced power according to slots used
- before configuring the device for SAR testing
 - identify the highest DL:UL exposure conditions
 - determine how to configure the required test conditions
 - SAR measurement system requires periodic UL bursts
 - test equipment may use 1-way or 2-way communication
 - should control symbols be active or inactive?

Test Setup Issues

SAR measurement requires signals with periodic duty factor

- this is the "*cf*" factor typically used in SAR measurement systems to compensate the measured fields with periodic duty factors
- however, "*cf*" is called crest factor in SAR systems
 - crest factor typically identifies peak-to-average ratios (PAR) in wireless or other applications
- these terms are often applied incorrectly in SAR measurements
- SAR system and test equipment limitation issues
 - establishing the required periodic test signal using test software & signal generator or communication test set / protocol simulator
 - SAR probe is not calibrated for high PAR signals
 - measurement errors are expected for OFDM/OFDMA signals
- other device configuration considerations
 - zone types, modulations and other WiMax parameters that need to be configured for SAR testing

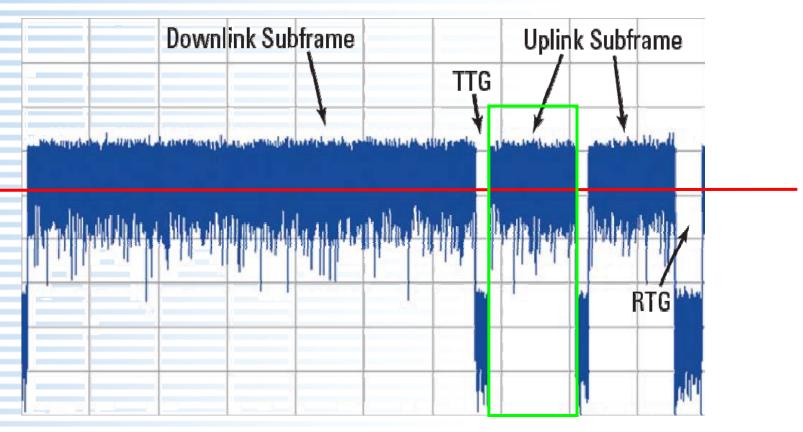


Identifying SAR Errors

need to measure SAR at various power levels to establish error margin

- at very low power, SAR probe sensors operate in square-law region
 - sensor output is linearly related to power
- at medium to higher power

- SAR probe sensor output is proportional to E-field



PAR vs. Duty Factor

PAR & duty factor issues are both SAR probe related

duty factor issues can be addressed by using periodic test signals

PAR issues are not easily compensated

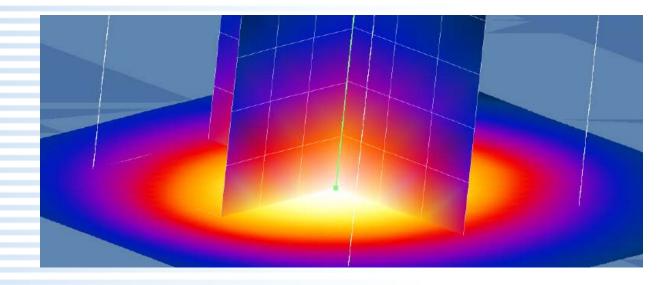
۲

Signal Conversion	100				
VS.	12				
Duty Factor	01 				1
$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$	<u>u</u> <u>u</u> <u>v</u> <u>v</u> ****		/		
For Periodic signals	0 98°	2	/		
duty factor = t/T	+ 10 ⁻²		Z		
conversion factor (<i>cf</i>) = $\sqrt{(T/t)}$	รส ² รส ²		9	9091	

懮

81

1

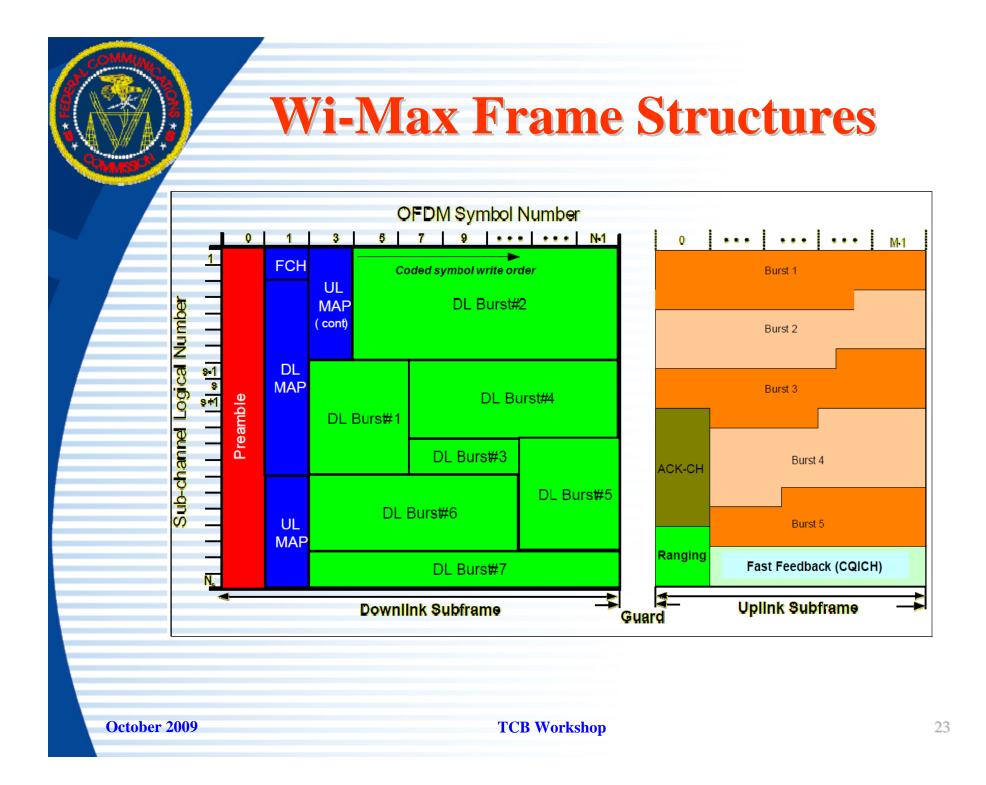

October 2009

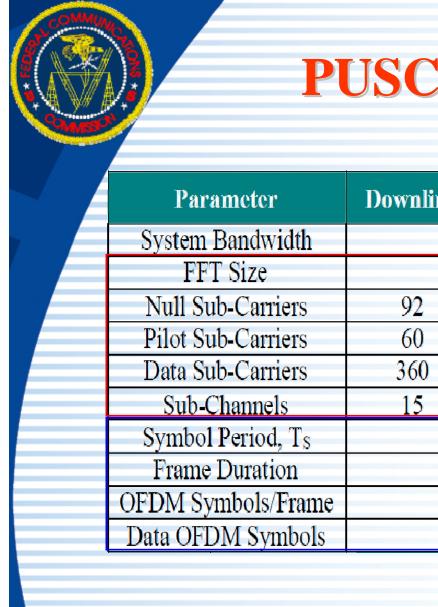
SAR Conversion $V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$ $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$
 $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$

depending on proximity of measurement points to the peak SAR location

- measurement points could be at high or low field locations
- the compensation could be in the square-law or linear region of the probe sensors
- all measured points must be in the square-law region of probe sensors to use probes calibrated with CW to ensure error is insignificant



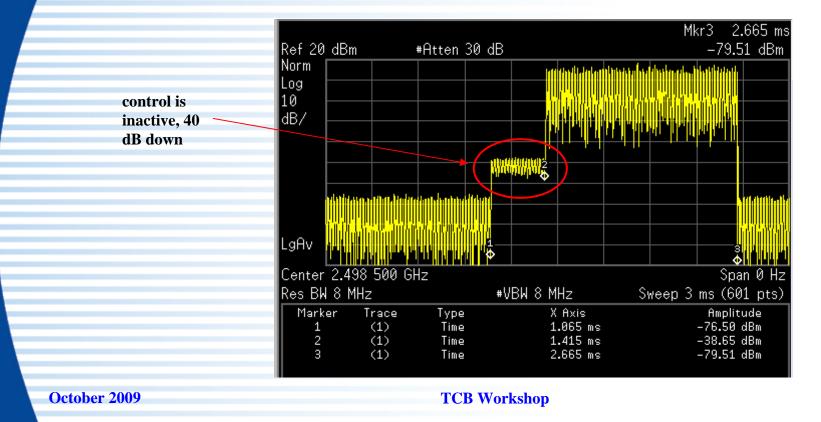

October 2009

0

WiMax Parameters

- Irames are divided into UL & DL sub-frames of
 - different zone types (PUSC, FUSC, AMC etc.) & sub-channels
- zones contain bursts
 - a burst is assigned to a dedicated user
 - OFDM bursts are different than conventional power bursts
- smallest logical allocation
 - frequency domain = sub-channel = groups of sub-carriers
 - time domain = symbol time \rightarrow guard time & carrier spacing
- sub-channels are group into segments
 - a segment can contain 1 6 sub-channels
- 1 slot is the minimum data allocation
 - a slot = 1 sub-channel = $1 \sim 3$ symbols (3 symbols for UL-PUSC)

PUSC Zone Example


Parameter	Downlink	Uplink	Downlink	Uplink			
System Bandwidth	5 MHz		10 MHz				
FFT Size	512		1024				
Null Sub-Carriers	92	104	184	184			
Pilot Sub-Carriers	60	136	120	280			
Data Sub-Carriers	360	272	720	560			
Sub-Channels	15	17	30	35			
Symbol Period, T _S	102.9 microseconds						
Frame Duration	5 milliseconds						
OFDM Symbols/Frame	48						
Data OFDM Symbols	44						

• Using DL:UL symbol ratio = 31:15 for SAR evaluation

- with 12 traffic and 3 inactive control symbols in UL

0

- the measured SAR needs scaling to account for control symbols
- duty factor = $12 \times 102.857 \mu s/5 ms = 24.69\%$ (or 25% if using 12/48 symbols)
- "*cf*" factor for SAR measurement = 1 / 0.2469 = 4.05 (or 4 if 25%)
- If highest DL:UL symbol ratio is 29:18; additional SAR scaling is necessary

SAR Scaling

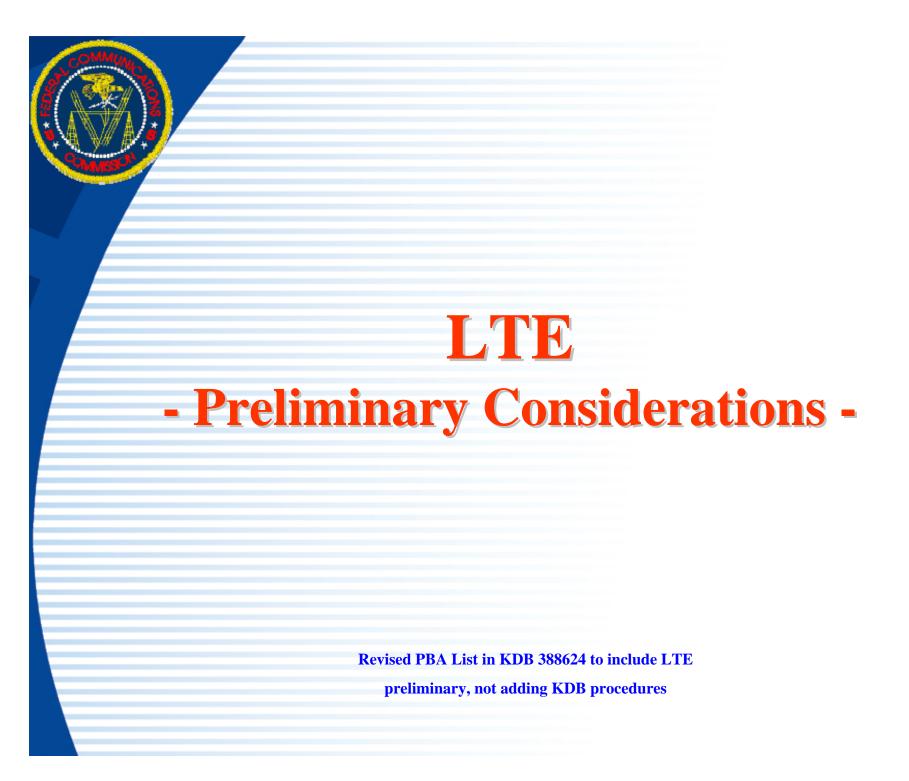
- control channels may occupy up to 5 slots
 - a slot is a sub-channel with 3 symbol duration
- total slot = 35 for 10 MHz and 17 for 5 MHz channel configuration
 - CQICH up to 2 slots & HARQ up to 3 slots
 - control = 5/35 or 5/17 slots
 - control symbol max. power = traffic symbol max. power x 5/35 (or 5/17)
- when the control symbols are inactive during SAR measurement
 - SAR is scaled by
 - [(control symbol max. power) x 3 + traffic symbol max. power x max. UL traffic symbols] / [measured max. traffic symbol power x traffic symbols used in SAR measurement]; (i.e. desired/measured)
 - for 200 mW maximum average power with highest DL:UL = 29:18 and SAR is measured using DL:UL = 31:15 with inactive control symbols
 - -10 MHz = (200 x 5/35 x 3 + 200 x 15) / (measured max. power x 12)
 - -5 MHz = $(200 \times 5/17 \times 3 + 200 \times 15) / (measured max. power \times 12)$
- *"cf"* factor of 4 is used in the SAR system to compensate the results

Equipment/Test Software Issues

- combinations of test software and signal generator have been typically used to setup WiMax devices for SAR testing
 - maximum output power is controlled by the test software
 - FCH, UL-MAP and DL-MAP are transmitted by the signal generator to configure the device on a frame by frame basis
 - transmitted info includes, DL:UL ratio, modulation, zone type, sub-channel configuration and other operating parameters
 - control symbols are not transmitted by the UL for this type of 1way communication configuration

basestation or protocol simulator setup

- need to establish static conditions similar to those used with test software and signal generator
- SAR measurements do not tolerate dynamic configurations


HSPA & HSPA+

Revising HSPA Attachment to KDB 941225

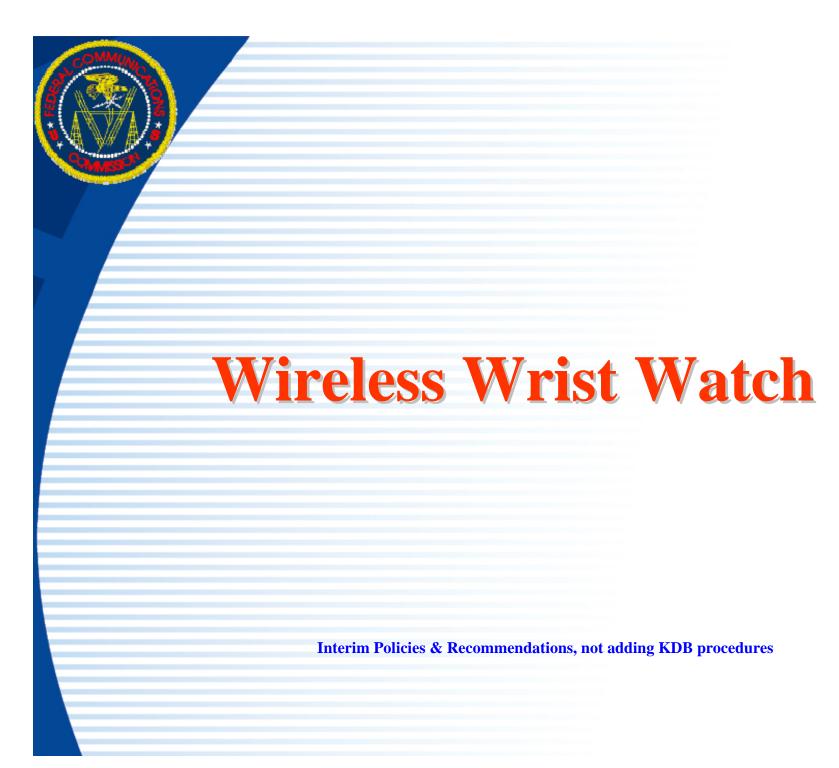
Revising PBA List in KDB 388624 for HSPA and add HSPA+

Typical Issues & Update

- when incorporating an approved (HSPA) transmitter module without modification into a host
 - HSPA power measurements should be quite similar to the original module, within the specified tune-up tolerance specifications
- when the same or similar support chipsets are used in different transmitters or modules
 - differences in RF components, design and layout can result in different output performance and SAR
 - power measurements of transmitters & modules using similar chipsets often been compared inappropriately, in attempts to resolve power measurement discrepancies
- Release 6 HSPA
 - to be taken off PBA list
 - (also see PBA for \geq 1.2 W/kg in KDB 447498)
- Release 7 HSPA+
 - submit PBA with conducted power results if 16 QAM applies to UL
 - see TS 34.121-1 Table C.11.1.4 for operating parameters

LTE PBA Considerations

- LTE requires PBA for SAR
- include details on device characteristics and capabilities in inquiry
 - UE category, power class, modulation, channel BW, frequency band, voice & data modes etc.
- include test plan, test equipment requirements and device configuration setup details
 - submit KDB inquiry on test requirements before testing
- set up device for SAR testing according to
 - TS 36.101 Annex A.2.2, full RB allocation for the RMC configurations in QPSK and 16 QAM
 - ensure that MPR and A-MPR are disabled and cannot be triggered
 - include details of how the device can be configured and put into the RMC test operating modes with the test equipment (and test software)
 - include time and frequency domain plots to demonstrate the device is transmitting full RB allocation at maximum average output power


USB Dongle & External Peripheral Transmitters

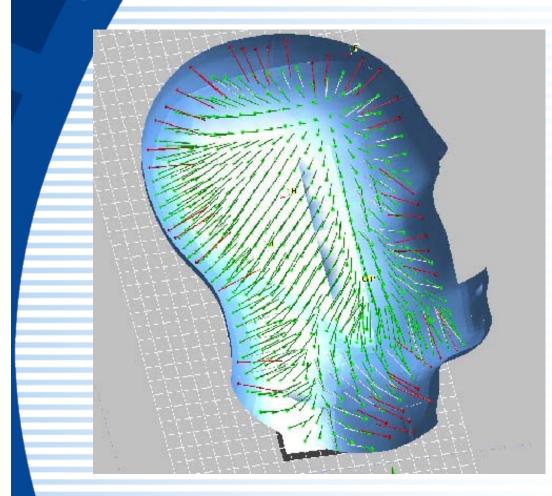
Revising USB Dongle Attachment to KDB 447498 Revising PBA List in KDB 388624 to include KDB 447498 Section 2 devices > 1.2 W/kg

USB Dongle Update

- existing procedures are intended for <u>simple dongles</u> with internally integrated antenna(s)
- if unclear, submit KDB inquiry before testing non-simple dongles
 - dongles with swivel/rotating connectors and/or antennas need additional considerations
 - certain spacers or contours/tapering added to a dongle housing may not enable the 5 mm test separation requirement to be relaxed
 - the 5 mm test separation distance for simple dongles is based on overall host, device and user operating configurations and exposure conditions
 - other evolving dongle configurations and variations
- also identify if swivel antennas may transmit in stowed position
- for dongles & external peripheral cards under section 2 of KDB 447498
 - PBA is required when SAR is above 1.2 W/kg
 - to be removed from TCB Exclusion List
 - FCC filing is optional

Design Related Issues

operating configurations & exposure conditions


- wrist-worn wireless watch supports voice and/or data
 - may support Bluetooth and held next to mouth operations
 - can support different wireless technologies and modes
- may also support simultaneous transmission
- material and construction
 - one piece watch with wrist bands
 - back of some watches may not conform to flat phantom
 - watch & band may have plastic, metal or other materials
 - other electronics could be integrated or embedded in the wrist band

Testing Issues

submit KDB inquiry to determine test requirements

- identify antenna location & distances to various surfaces of watch
- wrist SAR considerations
 - curvature of wrist band and housing often result in large gap between the back of the watch and flat phantom
 - requiring ad-hoc test considerations
- other exposure conditions
 - front of watch at 1 cm from flat phantom to cover other typical use conditions
- when non-standard phantom or test considerations are necessary
 - PBA is required
- user instruction considerations
 - device is limited to wrist-worn and next-to-mouth operations
 - if applicable, also identify simultaneous transmission requirements

Phantom Issues

- SAR measurement phantoms are not available for wrist watch
- watch designs vary and may not conform to a flat phantom or curvature around the head or neck of SAM phantom
- some regions of SAM cannot be reached by SAR probes
- phantom setup requires caseby-case consideration
- if less suitable phantoms must be used, ad-hoc procedures may be necessary to scale the measured SAR

October 2009

Wireless Power Charging/Transfer Applications

Interim Policies & Recommendations, not adding KDB procedures

RF Exposure & Testing Issues

- wireless power charging devices may operate at various frequencies
 - low kHz to 1 GHz or higher
 - with substantially different operating power requirements
 - according to frequency, design and implementation
- depending on device operating configurations & exposure conditions
 - 1.1307(c) & (d) are considered on a case-by-case basis
 - according to exposure potential and likelihood of non-compliance
- wireless power could be used to charge
 - consumer electronics, medical or other devices
- exposure evaluation considerations
 - SAR measurements are quite difficult at low frequencies
 - SAR modeling at low frequencies may also require special techniques
 - MPE limits are quite restrictive at lower frequencies
- submit KDB inquiry with design & implementation details to determine RF exposure requirements
 - excluded from TCB approval when RF exposure evaluation is necessary
 - as a result of 1.1307 (c) or (d)
 - otherwise, PBA may be considered on a case-by-case basis

October 2009

Interim Policies & Recommendations, not adding KDB procedures

Device Characteristics

- devices with built-in transmitter and antenna for low duty factor data transactions and/or location-based services
 - no voice capabilities
 - sporadic or intermittent transmissions
 - transmitting only short messages (<< 1 sec) for
 - credit card & other purchase transactions/requests
 - transmitting user location to request consumer service information
 - transmission is not typically source-based
 - a minimum transmission turn-around time may be determined to estimate the worst case transmission duty factor
 - for SAR test reduction or exclusion considerations
- these types of devices may include certain
 - point-of-sales devices: hand-held, body-worn and next to body
 - location-based service devices: hand-held and next to body
 - location tracker: ankle or body-worn

Test Considerations

transmission may include source-based & other duty factor

- source-based: GSM/TDMA or periodic transmission timers
- other transmission based duty factor
 - very short transmissions per transaction (<< 1 sec) followed by a fixed minimal turn-around time identified by the smallest receiving data block to establish a worst case duty factor (assuming this repeats continuously)
- do not consider duty factors according to message/packet size, data speed, irregular data gaps

must submit KDB inquiry to qualify for test reduction or exclusion

- if SAR evaluation is necessary, test according to the operating configurations & exposure conditions expected by the users
 - any accessories that may influence SAR must be tested accordingly, supplied with the device and cannot be easily disregarded by users
 - SAR tested at arbitrary separation distances is unacceptable
 - acceptable user operating instructions are necessary
 - if non-standard SAR procedures are used for testing
 - PBA is required; also submit KDB inquiry before testing

Test Reduction Considerations

- accessories & test frequencies -

Revising KDB 447498

Accessory Test Reduction

passive accessories

0

- may include batteries, body-worn and other audio accessories that are not primary radiating elements, but can introduce SAR changes
- test reduction should be based on the SAR impact of each accessory
 - material, construction, separation, similarities etc.
 - test reduction must be confirmed by KDB inquiry before testing
 - PBA is required, may be waived on a case-by-case basis
- devices operating with optional antennas
 - antennas are primary radiating elements; therefore, they do not qualify for the same test reductions as passive accessories
 - each antenna must be tested independently to determine the highest exposure conditions
 - the highest exposure test configuration for each antenna is used to determine possible test reduction for accessories used with that antenna

Test Frequency Reduction

- 10% of mid-band frequency used in IEEE 1528-2003 has been mostly intended for cellphone frequencies
- when the number of test frequencies (channels) is not specified in the FCC procedures or KDB Publications, use the following equation
 - to ensure sufficient channels are tested for the frequency range and transmission bandwidth used by the transmitter
- confirm with KDB inquiry before testing using less frequency channels
 - PBA is required, may be waived on a case-by-case basis, for reduced test channels

$$N_{\rm c} = Round \left[100 (f_{\rm high} - f_{\rm low}) / f_{\rm c} \right]^{0.5} \times [f_c / 100]^{0.2}$$

[f(bw)	30	80	150	350	450	650	750	837	915	1390	1450	1730	1880	2450	2600	3650	5200	5300	5600	5800
_	1.00%	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2
	3.00%	1	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4
	5.00%	2	2	2	3	3	3	3	3	3	4	4	4	4	4	4	5	5	5	5	5
_ [10.00%	2	3	3	4	4	5	5	5	5	- 5	5	6	6	6	6	6	- 7	7	7	7
	15.00%	3	4	4	5	5	6	6	6	6	7	7	7	7	7	7	8	9	9	9	9
	20.00%	4	4	5	6	6	7	7	7	7	8	8	8	8	8	9	9	10	10	10	10
	25.00%	4	5	5	6	7	7	7	8	8	8	9	9	9	9	10	10	11	11	11	11
[30.00%	4	5	6	7	7	8	8	8	9	9	9	10	10	10	11	11	12	12	12	12

SAR Evaluation

Adding Supplemental Attachment to KDB 450824

Simultaneous Transmission SAR Evaluation

- to be moved from Exclusion List to PBA List
 - when simultaneous transmission SAR evaluation is required
 - PBA is required for TCB approval
 - consider submitting KDB inquiry before testing
- SAR test reduction and exclusion procedures
 - KDB 616217 and its supplement
 - notebook/netbook/laptop computers
 - KDB 648474 for handsets

SAR System Verification

- Dipole Calibration -

Adding Supplemental Attachment to KDB 450824

Dipole Characteristics

- SAR dipoles are optimized in the test configurations required by SAR measurement standards
 - for measurement repeatability
 - lab-to-lab reproducibility
- specific design parameters are specified in SAR standards
 - at selected frequencies only (mostly for popular wireless bands)
 - to ensure acceptable electrical and mechanical tolerances
 - to achieve consistent SAR results
- the target SAR values for these specific dipoles are derived by standards committees in specific test configurations
 - using numerical simulation and experimental validation
- SAR standards recommend regular calibration (annual)
 - to verify electrical specifications and target SAR of the dipoles

Performance Validation

- when dipoles are constructed according to the parameters and tolerances required by measurement standards (both electrical & mechanical)
 - additional numerical validation is not necessary
 - experimental validation is required to verify the target SAR value
 - the dipole validation requires an already validated SAR system
- dipoles may also be optimized individually for impedance matching & return loss requirements (50 Ω and \leq 20 dB) for specific phantom conditions
 - the actual target SAR values may deviate from those in SAR standards, typically within a small range
 - therefore, experimental validation is important
- at frequencies where dipole parameters are not specified in SAR standards
 - the same procedures used by standards committees are necessary
 - using both numerical and experimental validation

0

Calibration Requirements

- SAR dipoles must be calibrated (verified) with a SAR system that has been fully validated according to measurement standards protocol
 - a calibrated dipole is required to validate the SAR system
 - calibrating a dipole on a system that needs the dipole to validate it is unacceptable
- the dipole must be calibrated according to the phantom configuration, tissue dielectric parameters and dipole spacing used by individual labs
- immediate re-calibration is required if
 - a dipole is damaged and properly repaired to meet requirements
 - the measured SAR deviates by more than 10% from the last calibrated value
 - compared to the most recent measurements made within 12 months
 - return loss changes by more than 3 dB or not meeting the -20 dB minimum requirement
 - real or imaginary part of impedance changes by more than 2.5 Ω
 - with proper documentation, 3 year calibration cycle is acceptable when immediate re-calibration is not required

Head or Body Liquid

when head and body liquids are required for testing a device

- SAR system verification should be performed using the tissue liquid required to test the primary operating & exposure conditions of the device
 - for example; head for cellphones and body for data cards
- when the dominant exposure configuration cannot be identified
 - either head or body liquid may be used for SAR system verification
 - the selection must be clearly explained in SAR report
- regardless of head or body liquid is used for system verification
 - the SAR probe must be calibrated for both head and body
 - the same probe must be used for dipole and device measurements
- if the measured dipole SAR is more than 8% from the calibrated target SAR

– separate system verifications are required for head and body