
2024 FCC Mobile Speed Test App
Technical Description

Office of Engineering and Technology
August 2024

Page 2 of 35

Table of Contents

I. Introduction .. 3

II. Mobile Broadband Performance Testing ... 3

A. FCC Speed Test Methodology Overview .. 3

1. Measurement Process .. 4

2. Performance Testing and Metrics ... 5

B. Test System Architechture ... 7

C. Download Speed and Upload Speed ... 7

D. Latency Packet Loss and Jitter .. 16

E. Background Testing .. 19

F. Test Server and Data Collection .. 20

G. App Functionality ... 35

List of Figures and Tables

Figure 1: Test Server Selection Process .. 5

Figure 2: Mobile Broadband Test Architecture.. 7

Figure 3: Warmup and Testing cycle for 1 single thread for Download .. 9

Figure 4: Warmup and Testing cycle for 1 single thread for Upload ... 10

Figure 5: Example showing Latency Test Methodology ... 16

Table 1: Example showing Packet Delay Variation ... 16

Table 2: Android Data Dictionary ... 24

 Table 3: iOS Data Dictionary .. 32

Page 3 of 35

I. Introduction
The FCC Mobile Speed Test App (“the App”)1 is a free mobile application available in the United States,
designed to evaluate the performance of mobile broadband service. Data from crowdsourced speed tests
and network performance challenges play a crucial role in supporting the FCC's Broadband Data Collection
program and helps identify where broadband is and is not available across the country.2

This technical description document for the App provides detailed information on the metrics and
methodologies used to conduct connected performance tests on mobile broadband networks. Specifically,
this document reviews the measurement techniques; the test sequence and testing methods for download,
upload, latency, packet loss, and jitter; environmental data collection for Android and iOS operating systems;
data reporting features; and provides an overview of the backend test system architecture.

II. Mobile Broadband Performance Testing

This section covers the FCC Mobile Speed Test App’s system architecture technical features, as well as other
technical aspects of the methods used to measure mobile broadband network performance.

A. FCC Mobile Speed Test App Methodology Overview

The App's technologies and methodologies are developed collaboratively with Mozark PTE. Ltd., a technical
solutions contractor. The contractor supports the FCC with the App’s development and maintenance.

The FCC Mobile Speed Test App consists of two separate mobile applications, due to the variations between
the iOS and Android operating systems, security features, and hardware. The iOS App is written in the Swift
programming language, while the Android version is written using the Java and Kotlin programming
languages.

1 The FCC Mobile Speed Test App is available to download for Android devices from Google Play and for
iOS devices from the Apple App Store.

2 See generally https://www.fcc.gov/BroadbandData.

https://play.google.com/store/apps/details?id=com.agence3pp.fcc
https://apps.apple.com/us/app/fcc-mobile-speed-test/id6470025404
http://www.fcc.gov/BroadbandData

Page 4 of 35

The Android operating system is supported on hardware devices from many different vendors such as
Google, Samsung, Motorola, and Nokia. The iOS operating system is supported on iPhone and iPad devices
from Apple. A list of radio parameters collected for each App is available in section A.2. Android devices
support the radio parameters that the FCC Mobile Speed Test App collects so that the BDC system and FCC
staff can verify the network environment. Both the Android and Apple devices collect speed test data for
QuickCheck, Challenge and Crowdsource tests.

Due to limitations in the iOS operating system, the App running on iPhones, currently, cannot be configured
to perform automated background testing.

1. Measurement Process
The measurements providing the underlying data depend on both the measurement client, which is
responsible for initiating the testing process, and the measurement servers, which serve as the endpoints
for the client's measurements. The measurement client is embodied in the publicly accessible FCC Mobile
Speed Test App, which is available free of charge, on Android and iOS devices throughout the nation. The
measurement client and measurement servers enable measurement tests to be conducted on the networks
of any mobile broadband service provider to which consumers are subscribed while using the App.

The measurement servers are hosted by carrier-neutral providers such as Amazon Web Services (AWS) and
Google Cloud Platform (GCP). These servers are strategically positioned across the United States.

The App uses a speed testing methodology that focuses on the performance of the specific mobile
broadband network being tested. When a test starts, the App will check if the connection is cellular or Wi-
Fi. If the connection is over a cellular network, the App will further identify its connection technology type
(i.e., 3G, 4G, or 5G). If the connection is over a Wi-Fi network, the App will test and show the performance
of the Wi-Fi network connection through its connected internet service for informational purposes only.

Page 5 of 35

Once the App selects a measurement server, all performance metrics are derived from traffic exchanged
between the App and the selected measurement server. The measurement server chosen is the optimal
server, determined by obtaining a list of 10 servers that are both in good health and in proximity to the App,
based on IP address approximation. Subsequently, each server in the candidate list undergoes an individual
ping using an Internet Control Message Protocol (ICMP) message, and the server providing the lowest
round-trip latency in its response is designated as the chosen server. Please note that this selected server
may not be the server that is geographically closest to the device running the App, but it is the optimal
server based on current network conditions. As a result, the metrics measure performance along a specific
path within each mobile broadband provider’s network, through the point of interconnection.

2. Performance Testing and Metrics

Figure 1: Test Server Selection Process

Page 6 of 35

Once the server is selected, the App performs the following active tests of mobile broadband performance:

• Download speed: Measures the download speed of three independent connections in megabits per
second over an 8-second time interval to transmit up to 1,000 megabytes (MB). The first 3-second
period is considered a warmup period and is not included in the calculation (i.e., 3 seconds warmup
and 5 seconds testing).

• Upload speed: Measures the upload speed of three independent connections in megabits per
second over an 8-second time interval to transmit up to 1,000 megabytes (MB). The first 3-second
period is considered a warmup period and is not included in the calculation (i.e., 3 seconds warmup
and 5 seconds testing).

• Latency: Measures the average round-trip time in milliseconds of up to 200 UDP (User Datagram
Protocol) data packets that are successfully acknowledged as received within 2 seconds. The
packets are sent over a 3-second time interval with a 2-second acknowledgement time window.

• Packet Loss: The percentage equal to the number of the latency packets not acknowledged within 2
seconds divided by the number of total latency packets sent.

• Jitter: The variation in latency, measured in milliseconds, is calculated with the acknowledged

latency test packets using the Packet Delay Variation (PDV) approach (see section II.D. Figure 6).

Page 7 of 35

B. Test System Architecture

The test system architecture focuses on measuring the performance of mobile broadband networks. The
carrier-neutral measurement servers are distributed geographically close to major internet exchange points
(IXP) throughout the United States and its territories. This chosen measurement server architecture allows
for unbiased network performance measurements.

As illustrated below in Figure 2, the App executes tests as part of the measurement system that comprises a
distributed network of “Test Devices” (i.e., measurement clients) used to accurately measure the
performance of mobile broadband connections. Upon completion of each test sequence, the App reports
measurement results to the backend server (“Data Collection”). The App measures download and upload
speeds, round-trip latency, packet loss, and jitter, by exchanging information with the selected
measurement servers (“Test Targets”), which the App contacts when a Test Device starts a test sequence.

The maximum capacity of each measurement server is 10 Gigabits per second (Gbps). Measurement servers
are located across the U.S. to enable a measurement client to select the measurement server with the least
latency.

Figure 2: Mobile Broadband Test Architecture

C. Download Speed and Upload Speed

Page 8 of 35

Two distinct tests are employed to measure download and upload speeds in megabits per second. These
tests establish multiple TCP connections to execute HTTPS GET and POST requests directed to the selected
test node. The primary goal of the test is to assess download or upload throughput by simultaneously
downloading or uploading data through three concurrent byte streams.

The download test involves hosting a randomly generated, and uncompressible, file with a small amount of
data on a web server located at the target test node. Throughout this test, the server measures the number
of bytes transferred by each thread and the elapsed time from server to device using chunks of data
downloaded from the selected measurement server. The actual test time utilized in calculations is a
minimum of 5 seconds and a warmup period of about 3 seconds. Each speed test session concludes after 8
seconds (including warmup period).

The upload test entails transferring a randomly generated, and uncompressible, file from the device to the
web server. The number of bytes transferred by each thread and the elapsed time are closely monitored
during this test. The data is monitored and measured in the form of chunks uploaded to the selected
measurement server. Like the download test, the actual test time used in calculations is a minimum of 5
seconds and a warmup period of about 3 seconds. Each speed test session concludes after 8 seconds
(including the warmup period).

To gather test traffic data, the measurement process will disregard any data chunks that were entirely
received or transmitted before the end of the initial 3-second warmup period. It is important to note the
test will not come to an abrupt stop at the precise 8-second mark, and any data chunks already initiated at
that point will be allowed to gracefully terminate. Each payload’s data is both transmitted and received in
multiple chunks, and comprehensive records are maintained for the bytes and times associated with
each individual chunk.

In this context, each connection keeps track of the number of payload bytes transferred between two
specific points in time and calculates the speed of each thread by dividing the number of bytes transferred
by the number of seconds within the active test window. These individual thread speeds are then
aggregated to calculate the total speed. Each individual thread is confirmed to ensure the 3-second
warmup period is completed before the 5-second test time begins.

The following is an example of the calculation performed for a multi-connection download test using
three concurrent TCP connections:

• S = Speed (Bytes per second)
• B = Bytes (Bytes transferred)
• T = Time (Seconds) (between start time point and end time point)
• S1 = B1 / T1 (speed for Thread 1 calculation)
• S2 = B2 / T2 (speed for Thread 2 calculation)
• S3 = B3 / T3 (speed for Thread 3 calculation)
• Speed = S1 + S2 + S3

Page 9 of 35

• Example values from a 3 MB payload:
• B1 = 3077360 T1 = 15.583963
• B2 = 2426200 T2 = 15.535768
• B3 = 2502120 T3 = 15.536826
• S1 = B1/T1 = 197469.668017
• S2 = B2/T2 = 156168.655454
• S3 = B3/T3 = 161044.475879
• S1 + S2 + S3 = Total Throughput of the line = 197469.668017 + 156168.655454 + 161044.475879 =

 514682 (bps) * 0.000008 = 4.12 Mbps

Figure 3: Warmup and Testing cycle for 1 single thread for Download

Page 10 of 35

Figure 4: Warmup and Testing cycle for

1 single thread for Upload

Page 11 of 35

The following pseudo-code describes the algorithm of the test in more detail:

Download test:
Get download test configuration from portal: transferMaxTime

warmupMaxTime

testTimeout = transferMaxTime + warmupMaxTime filename

nbThreads

Get download link from closest server: DownloadLink = closestServer.link +ressource (dl/)+ filename Start download

operations based on number of threads

for i in 0.. < nbThreads { customID =

"Thread-\(i + 1)"

startDownloadOperation(url: DownloadLink, customID: customID)

}

Func didDownloadDataCallback(nbOfBytesDownloaded)

{

// we create slot object and we store in it the last numberOfBytesDownloded + operationIdetifier + currentElapsedTime

slot = Slot(nbOfBytesDownloaded, OperationID, elapsedTime) slotArray.add(slot)

totalBytesDownloaded = totalBytesDownloaded + nbOfBytesDownloaded If elapsedTime >

timeout or totalBytesDownloaded <= 1000 MB {

stopAllDowloadOperationInProgress()}

Func didFinishDownloadingFile(error, OperationID)

{

If error = null {

If elapsedTime > timeout or totalBytesDownloaded <= 1000 MB { stopAllDowloadOperationInProgress()

}

Else {

// start new operation for the same threadID (which it finish downloading file) Op =

operation.getOperation(operationID)

startNewOperation(op.threadId)

}

}

CalculateSpeed() {

slotsPerThread = slotArray.filter(threadId) if

elapsedTime <= testTimeout {

trafficTime = transferMaxTime // 5 sec

} else { // elapsedTime > 8

trafficTime = elapsedTime - warmupMaxTime

Page 12 of 35

}

for slot in slotsPerThread {

// get bytes downloaded in the last 5 sec threadTime

+= taskTime

if elapsedTime - slot.time <= trafficTime {

threadTrafficBytes += slot.bytes

if elapsedTime - prevSlot.time < trafficTime && prevSlot.time > WarmUpTime { threadTrafficBytes +=

slot.bytes

timeToAdd = (WarmUpTime - slot.time)

}

}

if threadTime <= trafficTime // (5 sec) {

threadTrafficTime = threadTime

}

else {

threadTrafficTime = (threadTime - WarmUpTime) + timeToAdd

}

threadWarmupBytes = allThreadBytes - threadTrafficBytes threadWarmupTime =

allThreadTrafficTime - threadTrafficTime threadTrafficSpeed = threadTrafficBytes /

threadTrafficTime threadWarmupSpeed = threadWarmupBytes /

threadWarmupTime

allThreadSpeed = allThreadSpeed + threadTrafficSpeed // (displayed in gauge in Mbps) totalWarmupSpeed =

totalWarmupSpeed + threadWarmupSpeed

trafficBytes = trafficBytes + threadTrafficBytes
warmupBytes = warmupBytes + threadWarmupBytes

}

trafficTime = trafficBytes / allThreadSpeed // (in Bytes / sec)

warmupTime = warmupBytes / totalWarmupSpeed

// trafficBytes => bytesTransferred

// warmupBytes => warmuptransferred

// trafficTime => traffic duration

// warmupTime => warmup duration

}

Page 13 of 35

Upload test:

Get upload test configuration from portal:

transferMaxTime warmupMaxTime

testTimeout = transferMaxTime + warmupMaxTime filename

nbThreads

Get upload link from closest server: uploadLink = closestServer.link + ressource (upload.php)

Start upload operations based on number of threads for i in 0.. <

nbThreads {

numberOfTask = numberOfTask + 1 customID =

"Thread-\(i + 1)"

startUploadWithStreamOperation(url: uploadLink, customID: customID)

}

Func didUploadDataCallback(nbOfBytesUploaded)

{

// we create slot object and we store in it the last numberOfBytesUploaded + operationIdetifier + currentElapsedTime

slot = Slot(nbOfBytesUploaded, OperationID, elapsedTime) slotArray.add(slot)

totalBytesUploaded = totalBytesUploaded + nbOfBytesUploaded

}

Func didFinishUploadingFile(error, OperationID)

{

If error = null {

numberOfTaskFinished = numberOfTaskFinished + 1 If(elapsedTime >

timeout || totalBytesUploaded <= 1000 MB) {

If numberOfTaskFinished = numberOfTask

{ stopAllUploadedOperationInProgress()

}

Page 14 of 35

else {

}

// start new operation for the same threadID (which it finish uploading file) Op =

operation.getOperation(operationID) startNewOperation(op.threadId)

}

CalculateSpeed() {

slotsPerThread = slotArray.filter(threadId) if

elapsedTime <= testTimeout {

trafficTime = transferMaxTime // 5 sec

} else { // elapsedTime > 8

trafficTime = elapsedTime - warmupMaxTime

}

for slot in slotsPerThread {

// get bytes uploaded in the last 5 sec threadTime +=

taskTime

if elapsedTime - slot.time <= trafficTime { threadTrafficBytes

+= slot.bytes

if elapsedTime - prevSlot.time < trafficTime && prevSlot.time > WarmUpTime { threadTrafficBytes += slot.bytes

timeToAdd = (WarmUpTime - slot.time)

}

}

if threadTime <= trafficTime // (5 sec)

{

threadTrafficTime = threadTime

}

else {

threadTrafficTime = (threadTime - WarmUpTime) + timeToAdd

}

threadWarmupBytes = allThreadBytes - threadTrafficBytes threadWarmupTime =

allThreadTrafficTime - threadTrafficTime threadTrafficSpeed = threadTrafficBytes /

threadTrafficTime threadWarmupSpeed = threadWarmupBytes / threadWarmupTime

allThreadSpeed = allThreadSpeed + threadTrafficSpeed // (displayed in gauge in Mbps) totalWarmupSpeed =

totalWarmupSpeed + threadWarmupSpeed

trafficBytes = trafficBytes + threadTrafficBytes warmupBytes =

warmupBytes + threadWarmupBytes

}

Page 15 of 35

trafficTime = trafficBytes / allThreadSpeed // (in Bytes / sec)

warmupTime = warmupBytes / totalWarmupSpeed

// trafficBytes => bytesTransferred

// warmupBytes => warmuptransferred

// trafficTime => traffic duration

// warmupTime => warmup duration

}

Page 16 of 35

D. Latency, Packet Loss and Jitter

The UDP Latency and Packet Loss tests measure the time needed for UDP packets to travel from the device
to a designated test site and back within a set 5-second interval. The packets are transmitted only during the
first 3 seconds, with the remaining 2 seconds dedicated to the acknowledgment of all the sent packets.
Each packet size is 160 bytes. If an acknowledgment is not received within 2 seconds of sending a packet, it
is considered lost. The test is programmed to transmit a maximum of 200 packets (datagrams) and
maintains records on the number of packets sent, the average round-trip time for responses, and the total
count of lost packets.

Figure 5: Example showing Latency Test Methodology

Page 17 of 35

Latency test:

Get latency configuration from portal (interPacketTime + timeout + number of packets to send …) and from
optimal server: (ip + port)
Create packet with 160 bytes
if elapsedTime <= maxSendtime

{

for i in 1...numberOfPacketSent { sendPacket()
packetsSentArray.add(packet.identifier) sleep(15
ms)

}
}
ReceivePacketsCallback(packet)
{

If packetsSentArray.contain(packet.identifier) { Rtt =
currentTime - packet.sentTime
If Rtt >= 2000 ms { packetsLossArray.add(packet.identifier)
}
rttarray.add(rtt)

}

5 -calculate avgArray base on rttArray and send the new value each 0.1 sec to the gauge in test screen
When we reach timeout, or we have 200 packets sent and 200 packets received we stop the test and we
calculate

Page 18 of 35

Jitter
Percentage of Number of packets loss = 1 – (# of packets lost/total # of Packets sent) Bytes transferred =
number of packet sent * 160 bytes
Traffic duration = elapsedTime
BytesSec = Bytes transferred / elapsedTime in sec

Jitter is determined by computing the average variation in Round-Trip Time (RTT) across successive packets. The image
below provides how packet delay variation is calculated.

Table 1: Example showing Packet Delay Variation

Step 1: To get the variation subtract RTT value from previous
RTT value

Step 2: Change all negative values
to positive

 Step 3: Take average of variations
to calculate jitter

RTT Cycle RTT Variation=
(RTT(n)-RTT(n+1)) RTT Cycle RTT Variation=

(RTT(n)-RTT(n+1)) Variation=
(RTT(n)-RTT(n+1))

CurrentRtt1 75.2641 CurrentRtt1 75.2641

CurrentRtt2 73.95968 1.404416 CurrentRtt2 73.95968 1.404416 1.404416

CurrentRtt3 127.51 -53.550336 CurrentRtt3 127.51 -53.550336 53.550336

CurrentRtt4 110.4279 17.082112 CurrentRtt4 110.4279 17.082112 17.082112

CurrentRtt5 91.69306 18.734848 CurrentRtt5 91.69306 18.734848 18.734848

CurrentRtt6 72.64998 19.043072 CurrentRtt6 72.64998 19.043072 19.043072

CurrentRtt7 73.58797 -0.937984 CurrentRtt7 73.58797 -0.937984 0.937984

CurrentRtt8 75.97773 -2.38976 CurrentRtt8 75.97773 -2.38976 2.38976

CurrentRtt9 73.86112 2.116608 CurrentRtt9 73.86112 2.116608 2.116608

| | | | |

| | | | |

| | | | |

CurrentRtt197 115.1526 15.884032 CurrentRtt197 115.1526 15.884032 15.884032

CurrentRtt198 98.56205 16.590592 CurrentRtt198 98.56205 16.590592 16.590592

CurrentRtt199 79.75194 18.810112 CurrentRtt199 79.75194 18.810112 18.810112

CurrentRtt200 142.7799 -63.027968 CurrentRtt200 142.7799 -63.027968 63.027968

Jitter (Average of variations) =
14.03 ms

Page 19 of 35

E. Background Testing

While the Android and iOS versions of the FCC Mobile Speed Test App allow users to initiate single and
repeated tests in the foreground, the Android version of the App offers an additional feature, which
automatically performs tests in the background at preset intervals. Users can turn this feature on or off from
the App settings. iOS devices currently lack the capability for automated background testing. The Android
automatic background testing approach is designed to minimize external factors that might impact the
accuracy of mobile broadband performance measurements, thus providing valuable, high-quality data.

Even though the tests are scheduled to run at set intervals, the exact timing of the background test may
not be precise. The framework may decide to delay tests, especially for higher frequencies or when the
device is in power save mode, which is a low-power state during extended periods of inactivity.

The allowed frequencies are:
• Daily
• Weekly

• Monthly

Page 20 of 35

F. Test Server and Data Collection

The App collects test results from active download, upload, latency, jitter, and packet loss tests.
Additionally, the App collects date, time, location, connection, and device version data. All data are
recorded on the device before it is reported to backend servers. Once the data is received by backend
servers, it is entered into a database. Users can export data from the App in CSV format.3

All measurements are carried out using one of Mozark's test servers. Currently, these are:

• s1-fcc-test-lowa.mozark.ai

• s2-fcc-test-ohio.mozark.ai

• s1-oregon-us-west1-b-new.mozark.ai

• s1-mozark-nevada-fcc-new.mozark.ai

• s1-southcalifornia-us-east1-b.mozark.ai

• s1-oregon-us-west1-b-new.mozark.ai

• s1-fcc-georgia.mozark.ai

• s1-fcc-utah.mozark.ai

• s1-fcc-north-carolina.mozark.ai

• s1-fcc-nevada.mozark.ai

• s2-fcc-massachusetts.mozark.ai

• s2-fcc-illinois.mozark.ai

• s2-fcc-texas.mozark.ai

• s2-fcc-arizona.mozark.ai

• s2-fcc-washington.mozark.ai

• s2-fcc-colorado.mozark.ai

• s2-fcc-florida.mozark.ai

• s2-fcc-minnesota.mozark.ai

• s2-fcc-newyork.mozark.ai

• s2-fcc-pennsylvania.mozark.ai

• s1-fcc-california.mozark.ai

• s1-fcc-virginia.mozark.ai

• s1-fcc-texas.mozark.ai

• s1-fcc-ohio.mozark.ai

Test server selection:

Page 21 of 35

This server selection is determined at the start of each test cycle. The optimal test server i s determined for
Android and iOS by measuring the latency using the ICMP ping. Multiple healthy servers, i.e., servers where
utilization is under configured thresholds, are compared and the server with the lowest Round Trip Time [RTT]
is used for measurements.

3 The tests results are transferred depending on the available connectivity at the conclusion of the test and can be stored and

forwarded when connectivity is not immediately available.

Page 22 of 35

1. Android Test Flow and Environmental Data

After a user starts a test using an Android device, the following sequence of actions takes place:

• The App sends a current Geo Location to backend (Longitude and Latitude).

• Backend will share the best 10 servers after checking server health (CPU and Bandwidth Utilization)
and determining the nearest location to user.

• App will perform the RTT test on each server as part of server selection process and choose the best
server i.e., having the lowest RTT.

• The server selection process is performed against each of the targets in the list.

• The Radio Characteristics of network (e.g., signal strength, RSRP, RSSI, RSRQ, SINR, and CQI) are
measured and reported at the beginning and end of every Latency, Download and Upload test.

• The UDP latency/Packet loss/jitter test is performed against the chosen test server.

• The Download test is performed against the chosen test server.

• The Upload test is performed against the chosen test server.

• The Radio Characteristics of network is measured and reported at the end of every Latency, Download
and Upload test.

• The results are submitted to the backend Data Ingestion API and a resulting Test ID is retrieved.

• The results for the entire test sequence are paired with their respective Test ID and can be
downloaded from the App.

At the end of a test sequence, the following information is displayed to the user:
• Download speed (Mbps)

• Upload speed (Mbps)

• Latency (ms)

• Packet loss (%)

• Jitter (ms)

• Test ID (Provided there was successful submission of test results, and this Test ID is generated)

• Connection Type (Indicates either the name of the wireless network that was tested if tests were
purely conducted over cellular or indicates a Wi-Fi connection if tests were conducted over Wi-Fi at
any point in the test sequence)

• Test Server (The location of the test server)

• Date (The date and time of measurement)

If any test fails to obtain a measurement for any reason (such as when there is no network connectivity at

Page 23 of 35

all), then “FAILED” is shown for the respective test result. If any other data was unavailable, due to a failure,
then a "-" is shown in its place.

Page 24 of 35

Table 2: Android Data Dictionary

The set of tables below define a collective list of all the data fields that are both collected during the tests
and the fields that are generated server-side. A small subset of fields that only function as part of the
submission from the Android App to the backend ingest are also listed for completeness.

The table below lists all possible fields that are reported by the Android App to the Mozark backend ingest.

Field Name Description

submission_ category
The category of the data submission. This represents an enumerated value and
must be one of the following: Consumer Crowdsource | Consumer Challenge |
Consumer QuickCheck.

name The full name of the user. This field is null for Consumer QuickCheck test.

email
The email address of the user. Value must match valid email address format e.g.,
user@domain.tld. This field is null for Consumer QuickCheck test.

phone_number
The phone number of the device used for testing by the user. The phone number
should be fixed to 10 digits. This value may be null if the submission_category is
Consumer Crowdsource. This field is null for Consumer QuickCheck test.

test_id The unique Id for each test cycle, generated by backend.

device_timestamp

Timestamp of the time at which the test submission data were transmitted to the
App’s servers, measured by the device.
- Value must match valid ISO-8601 format including seconds, e.g., YYYY-MM-
DD[T]hh:mm:ss±hh:mm

server_timestamp

Timestamp of the time at which the test submission data were transmitted to the
App’s servers, measured by the server.
- Value must match valid ISO-8601 format, e.g., YYYY-MM-
DD[T]hh:mm:ss±hh:mm

server_source_ ip_address
Source IP address of the device submitting test submission data, measured by
the server.
- Value must be in valid IPv4 or IPv6 format if not null.

server_source_port

Source TCP port of the device submitting test submission data, measured by the
server.
-Value must correspond to transmission recorded in the server_timestamp and
server_source_ip_address values as measured by the server, if not null.

device_type
Type of device.
-Value must be either Android or iOS.

manufacturer Name of the device manufacturer. e.g., Google.
model Name of the device model. e.g., Pixel 6
operating_system The OS version of Operating system e.g., 33

device_tac
The 8-digit Type Allocation Code (TAC) of the device during the Test e.g.,
35142059 . The value may be null if the App does not have requisite permissions,
or the device does not return a valid device TAC.

device_id
A unique device identifier generated by the App on the device, on an individual
App-installation basis e.g., a255e318-df8d-46d1-a23b-9589e4d2e53e.

app_name
The name of the FCC Mobile Speed Test App. In the case of the Mozark App, this
is currently “FCC Speed Test App - Android”.

app_version The version of the FCC Mobile Speed Test App e.g., 1.0.
provider_name The name of the mobile service provider e.g., T-Mobile.

mailto:user@domain.tld

Page 25 of 35

Field Name Description

sim_mobile_ country_code
The mobile country code of mobile service provider reported for the active SIM
card in the device e.g., 310.

sim_mobile_ network_code
The mobile network code of mobile service provider reported for the active SIM
card in the device e.g., 260.

beginning_cellular_net_mobile_country_cod
e

The mobile country code of mobile service provider reported from the connected
network at beginning of test e.g., 310.

end_cellular_net_mobile_country_code
The mobile country code of mobile service provider reported from the connected
network at end of test e.g., 310.

beginning_cellular_net_mobile_network_cod
e

The mobile network code of mobile service provider reported from the
connected network at beginning of test e.g., 260.

end_cellular_net_mobile_network_code
The mobile network code of mobile service provider reported from the
connected network at end of test e.g., 260.

in_vehicle_flag Indicates whether the test was conducted while in-vehicle or outdoors.

scheduled_test_flag
Indicates whether the test was automated/scheduled or whether it was user-
initiated manually. True if it is scheduled otherwise false.

external_antenna_flag

Boolean flag indicating whether an in-vehicle test was conducted using an
antenna external to the vehicle.

- The value may be false when in_vehicle_flag is false.

tests The name of test e.g., Download/Upload/Latency.

download_time/upload_time/latency_time

Timestamp of the time at which the connection for the test metric was initialized
(i.e., prior to any warmup period during which the connection stabilized). This is
measured by the device and adheres to the ISO-8601 format e.g., YYYY-MM-
DD[T]hh:mm:ss

warmup_ duration
Duration in microseconds that connection took to stabilize (e.g., TCP slow start)
before the test metric commenced.

warmup_bytes_ transferred
Measured total amount of data in bytes that were transferred during the period
the connection took to stabilize (e.g., TCP slow start) before the test metric
commenced.

duration
Duration that the test metric took to complete in microseconds, excluding
warmup time in case of download and upload.

bytes_transferred
Measured total amount of data in bytes that the test metric transferred,
excluding warmup bytes transferred. Applies to only the Download and Upload
tests.

bytes_sec
Measure number of bytes per second that the test metric transferred excluding
warmup period. Applies to only the Download and Upload tests.

targets List of hostname or IP address of target server(s) used for the test metric.

success_flag

Indicates status of test success (True) or failure (false).
Latency: if total packet received array count = 0 status is False (Failure) else True
(Success).
Download: If totalBytesDownload= 0 after time out duration configured is
False (Failure) else True (Success).
Upload: If totalBytesUPload= 0 after time out duration configured is False
(Failure) else True (Success).

beginning_carrier_aggregation_flag

Indicates whether the network used carrier aggregation during the test metric at
beginning of test.
- This value may be null for 3G tests. This value may also be null if the device
does not return a valid value or a value of Unknown.

end_carrier_aggregation_flag
Indicates whether the network used carrier aggregation during the test metric at
end of test.

Page 26 of 35

Field Name Description
- This value may be null for 3G tests. This value may also be null if the device
does not return a valid value or a value of Unknown.

network_ connected_flag Indicates whether the network is connected.
network_ available_flag Indicates whether the network is available.
network_ roaming_flag Indicates whether the network is roaming.
round_trip_time Round-trip latency in microseconds.
jitter Round-trip jitter in microseconds.
packets_sent Number of packets sent during the test.
packets_received Number of packets received during the test.
beginning_location_time Timestamp of the time at which the location was recorded at beginning of Test.
end_location_time Timestamp of the time at which the location was recorded at end of Test.

beginning_latitude
Unprojected (WGS-84) geographic coordinate latitude in decimal degrees of the
reported location at the start of test.
Value must have minimum precision of 6 decimal digits.

end_latitude
Unprojected (WGS-84) geographic coordinate latitude in decimal degrees of the
reported location at the end of test.
Value must have minimum precision of 6 decimal digits.

beginning_longitude
Unprojected (WGS-84) geographic coordinate longitude in decimal degrees of
the reported location at the start of test.
Value must have minimum precision of 6 decimal digits.

end_longitude
Unprojected (WGS-84) geographic coordinate longitude in decimal degrees of
the reported location at the end of test.
Value must have minimum precision of 6 decimal digits.

beginning_horizontal_accuracy

Horizontal accuracy of the location, radial, in meters measured from the device
at the end of test
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_horizontal_accuracy

Horizontal accuracy of the location, radial, in meters measured from the device
at the beginning of test.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

avg_speed
Avg Speed in meters per second measured from the device.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

speed_accuracy
Speed accuracy in meters per second measured from the device.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_physical_cell_id

Measured Physical Cell Identity (PCI) of the cell at beginning of test
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_physical_cell_id

Measured Physical Cell Identity (PCI) of the cell at end of test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_cell_connection
The connection status of the cell at beginning of test.
The value is either 0, 1 or 2
 0 – Not Serving, 1 -Primary Serving, 2 – Secondary Serving.

Page 27 of 35

Field Name Description
-This value may be null if the device does not return a valid value or returns a
value of Unknown.

end_cell_connection

The connection status of the cell at end of test.
The value is either 0, 1 or 2.
 0 – Not Serving, 1 -Primary Serving, 2 – Secondary Serving.
-This value may be null if the device does not return a valid value or returns a
value of Unknown.

beginning_network_generation
The network generation of the cell at beginning of test. The value is always one
of the following; 2G |3G | 4G | 5G | unknown.

end_network_generation
The network generation of the cell at end of test. The value is always one of the
following: 2G |3G | 4G | 5G | unknown.

beginning_network_subtype
The network subtype of the cell at beginning of test. The value is always one of
the following: 1X | EVDO | WCDMA | GSM | HSPA | HSPA+ | LTE | NR_SA |
NR_NSA.

end_network_subtype
The network subtype of the cell at end of test. The value is always one of the
following: 1X | EVDO | WCDMA | GSM | HSPA | HSPA+ | LTE | NR_SA | NR_NSA.

beginning_rssi

The measured Received Signal Strength Indication (RSSI) of the cell at beginning
of test.
- This value may be null for 5G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_rssi

The measured Received Signal Strength Indication (RSSI) of the cell at end of test.
- This value may be null for 5G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_rsrp

The measured Reference Signal Received Power (RSRP) of the cell at beginning of
test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_rsrp

The measured Reference Signal Received Power (RSRP) of the cell at end of test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_rsrq

Measured Reference Signal Received Quality (RSRQ) in dB of the cell at beginning
of test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_rsrq

Measured Reference Signal Received Quality (RSRQ) in dB of the cell at end of
test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_sinr

Measured Signal to Interference and Noise Ratio (SINR) in dB of the cell at
beginning of test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

Page 28 of 35

Field Name Description

end_sinr

Measured Signal to Interference and Noise Ratio (SINR) in dB of the cell at end of
test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_csi_rsrp

Measured 5G Channel State Information (CSI) RSRP in dBm of the cell at
beginning of test.
- This value is null for 3G and 4G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_csi_rsrp

Measured 5G Channel State Information (CSI) RSRP in dBm of the cell at end of
test.
- This value is null for 3G and 4G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_csi_rsrq

Measured 5G Channel State Information (CSI) RSRQ in dB of the cell at beginning
of test.
- This value is null for 3G and 4G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_csi_rsrq

Measured 5G Channel State Information (CSI) RSRQ in dB of the cell at end of
test.
- This value is null for 3G and 4G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_csi_sinr

Measured 5G Channel State Information (CSI) SINR in dB of the cell at beginning
of test.
- This value is null for 3G and 4G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_csi_sinr

Measured 5G Channel State Information (CSI) SINR in dB of the cell at end of test.
- This value is null for 3G and 4G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_cqi

Measured Channel Quality Indicator (CQI) of the cell at beginning of test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_cqi

Measured Channel Quality Indicator (CQI) of the cell at end of test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_spectrum_band

Spectrum band used by the cell at beginning of test.
- This value is null for 3G cells.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_spectrum_band
Spectrum band used by the cell at end of test.
- This value is null for 3G cells.

Page 29 of 35

Field Name Description
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_spectrum_bandwidth
Total amount of spectral bandwidth used by the cell in MHz at beginning of test.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_spectrum_bandwidth
Total amount of spectral bandwidth used by the cell in MHz at end of test.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_arfcn
Measured physical RF channel number of the cell at beginning of test.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_arfcn
Measured physical RF channel number of the cell at end of test.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

beginning_location_provider Name of location provider at the beginning of the test e.g., GPS.
end_location_provider Name of location provider at the end of the test e.g., GPS.
beginning_cellular_cell_network_time Timestamp indicating time when the test metric was initiated.
end_cellular_cell_network_time Timestamp indicating time when the test metric was ended.

beginning_cellular_cid
Measured mobile broadcast cell identifier at beginning of test
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

end_cellular_cid
Measured mobile broadcast cell identifier at end of test.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

packet_loss Percentage of packet lost during Latency test.
packet_size Size of Packet sent during Latency test.
cycle_Date Timestamp indicating time when the first test within the test cycle was initiated.
connection_type Type of network connection e.g., Cellular or Wi-Fi.
location_type Type of Location selected by user example Indoor, Ourdoor , In-Vehicle.

beginning_signal_strength

Measured signal strength in dBm of the cell at beginning of test.
- Note: this value represents the Received Signal Strength Indication (RSSI) for 3G
tests or the Reference Signal Received Power (RSRP) for 4G LTE or 5G-NR tests.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.
- Value is not available on iOS and may be null for these device types.

end_signal_strength

Measured signal strength in dBm of the cell at end of test.
- Note: this value represents the Received Signal Strength Indication (RSSI) for 3G
tests or the Reference Signal Received Power (RSRP) for 4G LTE or 5G-NR tests.
- Value may be null if the device does not return a valid value or else returns a
value of unknown.

The following fields are generated server-side and are also present in the data transferred from the Mozark backend
to the BDC backend. They are also present in the local device export data.

Field Name Description

Page 30 of 35

test_id
The unique identifier used by the App or entity to
differentiate tests.

server_timestamp
The timestamp measured by the server of the moment at which the test
submission data was received by the App’s servers.

server_source_port
The source TCP port of the device submitting test submission data,
measured by the server.

server_source_ip_address
The source IP address of the device

submitting test submission data, measured by the server.

Page 31 of 35

2. iOS Test Flow and Environmental Data

When a user starts a speed test using an iOS device, the following sequence of actions takes place:

• The App sends a Geo Location of the test to backend (Longitude and Latitude).

• Backend will share the maximum best 10 servers after checking server health (CPU and Bandwidth
Utilization) and determining the nearest location to user.

• App will perform the RTT test on each of the above provided server list as part of server selection
process and choose the server with lowest RTT.

• The UDP latency/Packet loss/jitter test is performed against the chosen test server.

• The Download test is performed against the chosen test server.

• The Upload test is performed against the chosen test server.

• The results are submitted to the backend Data Ingestion API and a resulting Test ID is retrieved.

• The results for the entire test sequence are paired with their respective Test ID and can be downloaded
from the App.

At the end of a test sequence, the following information is displayed to the user:

• Download speed (Mbps)

• Upload speed (Mbps)

• Latency (ms)

• Packet loss (%)

• Jitter (ms)

• Test ID (provided there was successful submission of test results and this Test ID is generated)

• Connection Type (indicates either the name of the wireless network that was tested if tests were
purely conducted over cellular or indicates a Wi-Fi connection if tests were conducted over Wi-Fi at
any point in the test sequence)

• Test Server (the location of the test server)

• Date (the date and time of measurement)

If any test fails to obtain a measurement for any reason (such as when there is no network connectivity at all),
then “FAILED” is shown for the respective test result. If any other data was unavailable, due to a failure, then
a “-“ is shown in its place.

Page 32 of 35

Table 3: iOS Data Dictionary

The set of tables below define a collective list of all the data fields that are both collected during the tests and
the fields that are generated server-side. A small subset of fields that function only as part of the submission
from the iOS App to the backend ingest are also listed for completeness.

The table below lists all possible fields that are reported by the iOS App to the Mozark backend ingest.

Field Name Description

submission_category
The category of the data submission. This represents an enumerated value and must
be one of the following: Consumer Crowdsource | Consumer Challenge | Consumer
QuickCheck.

name The full name of the user. This field is null for Consumer QuickCheck test.

email
The email address of the user. Value must match valid email address format e.g.,
user@domain.tld

phone_number
The phone number of the user. The phone no should be fixed to 10 digits. This value
may be null if the submission category is Consumer Crowdsource. This field is null for
Consumer QuickCheck test.

test_id The unique Id for each test cycle, generated by backend.

device_timestamp

Timestamp of the time at which the test submission data were transmitted to the
App’s servers, measured by the device.

- Value must match valid ISO-8601 format including seconds e.g., YYYY-MM-
DD[T]hh:mm:ss±hh:mm

server_timestamp

Timestamp of the time at which the test submission data were transmitted to the
App’s servers, measured by the server.

- Value must match valid ISO-8601 format e.g., YYYY-MM-DD[T]hh:mm:ss±hh:mm

server_source_ ip_address

Source IP address of the device submitting test submission data, measured by the
server.

- Value must be in valid Ipv4 or Ipv6 format if not null.

server_source_port

Source TCP port of the device submitting test submission data, measured by the
server.

-Value must correspond to transmission recorded in the server_timestamp and
server_source_ip_address values as measured by the server, if not null.

device_type Type of device: Value must be either Android or iOS.

manufacturer Name of the device manufacturer. E.g., Apple.
model Name of the device model e.g., “iPhone14,4” meaning iPhone 13 Mini.
operating_system The OS version of Operating system e.g., 16.1.1

device_id
A unique device identifier generated by the App on the device, on an individual App-
installation basis e.g., a255e318-df8d-46d1-a23b-9589e4d2e53e.

app_name
The name of the FCC Mobile Speed Test App. In the case of the FCC Mobile Speed Test
App, this is always “FCC Speed Test App - iOS”.

app_version The version of the FCC Mobile Speed Test App e.g., 1.0.

provider_name The name of the mobile service provider e.g., T-Mobile.

Page 33 of 35

Field Name Description

sim_mobile_ country_code
The mobile country code of mobile service provider reported for the active SIM card in
the device e.g., 310.

sim_mobile_ network_code
The mobile network code of mobile service provider reported for the active SIM card
in the device e.g., 260.

in_vehicle_flag Indicates whether the test was conducted while in-vehicle or outdoors.

external_antenna_flag
Boolean flag indicating whether an in-vehicle test was conducted using an antenna
external to the vehicle.
- The value may be false when in_vehicle_flag is false.

tests The name of test e.g., Download/Upload/Latency.

download_time/upload_time/latency_ti
me

Timestamp of the time at which the connection for the test metric was initialized (i.e.,
prior to any warmup period during which the connection stabilized). This is measured
by the device and adheres to the ISO-8601 format e.g., YYYY-MM-DD[T]hh:mm:ss

warmup_ duration
Duration in microseconds that connection took to stabilize (e.g., TCP slow start) before
the test metric commenced.

warmup_bytes_ transferred
Measured total amount of data in bytes that were transferred during the period the
connection took to stabilize (e.g., TCP slow start) before the test metric commenced.

duration
Duration that the test metric took to complete in microseconds, excluding warmup
time in case of download and upload.

bytes_transferred
Measured total amount of data in bytes that the test metric transferred, excluding
warmup bytes transferred. Applies to only the Download and Upload tests.

bytes_sec
Measure number of bytes per second that the test metric transferred excluding
warmup period. Applies to only the Download and Upload tests.

targets List of hostname or IP address of target server(s) used for the test metric.

success_flag Indicates whether the test completed successfully.
round_trip_time Round-trip latency in microseconds.

jitter Round-trip jitter in microseconds.
packets_sent Number of packets sent during the test.
packets_received Number of packets received during the test.

beginning_location_time Timestamp of the time at which the location was recorded at beginning of test.
end_location_time Timestamp of the time at which the location was recorded at end of test.

beginning_latitude
Unprojected (WGS-84) geographic coordinate latitude in decimal degrees of the
reported location at the start of test.

Value must have minimum precision of 6 decimal digits.

end_latitude
Unprojected (WGS-84) geographic coordinate latitude in decimal degrees of the
reported location at the end of test.

Value must have minimum precision of 6 decimal digits.

beginning_longitude
Unprojected (WGS-84) geographic coordinate longitude in decimal degrees of the
reported location at the start of test.
Value must have minimum precision of 6 decimal digits.

end_longitude
Unprojected (WGS-84) geographic coordinate longitude in decimal degrees of the
reported location at the end of test.

Page 34 of 35

Field Name Description
Value must have minimum precision of 6 decimal digits.

beginning_horizontal_accuracy

Horizontal accuracy of the location, radial, in meters measured from the device at the
beginning of test.

- Value may be null if the device does not return a valid value or else returns a value of
unknown.

end_horizontal_accuracy

Horizontal accuracy of the location, radial, in meters measured from the device at the
end of test.

- Value may be null if the device does not return a valid value or else returns a value of
unknown.

avg_speed
Avg speed in meters per second measured from the device at beginning of test.

- Value may be null if the device does not return a valid value or else returns a value of
unknown.

speed_accuracy
Speed accuracy in meters per second measured from the device.
- Value may be null if the device does not return a valid value or else returns a value of
unknown.

beginning_network_generation
The network generation of the cell at beginning of test. The value is always one of the
following: 2G |3G | 4G | 5G | unknown.

end_network_generation
The network generation of the cell at end of test. The value is always one of the
following: 2G |3G | 4G | 5G | unknown.

beginning_network_subtype
The network subtype of the cell at beginning of test. The value is always one of the
following: 1X | EVDO | WCDMA | GSM | HSPA | HSPA+ | LTE | NR_SA | NR_NSA.

end_network_subtype
The network subtype of the cell at end of test. The value is always one of the
following: 1X | EVDO | WCDMA | GSM | HSPA | HSPA+ | LTE | NR_SA | NR_NSA.

beginning_location_provider Name of location provider at the beginning of the test e.g., GPS.
end_location_provider Name of location provider at the end of the test e.g., GPS.
beginning_cellular_cell_network_time Timestamp indicating time when the test metric was initiated.
end_cellular_cell_network_time Timestamp indicating time when the test metric was ended.
packet_loss Percentage of packet lost during Latency test.
packet_size Size of Packet sent during Latency test.
cycle_Date Timestamp indicating time when the first test within the test cycle was initiated.
connection_type Type of network connection e.g., Cellular or Wi-Fi.
location_type Type of Location selected by user example Indoor, Ourdoor , In-Vehicle.

Page 35 of 35

G. App Functionality
The FCC Mobile Speed Test App runs tests to measure download and upload speed, latency, jitter, and packet
loss. If users have a limited data plan, they can set a data limit for the App and which day of the month the
limit resets. The App conducts Crowdsource, Challenge and QuickCheck tests to test network speeds and
latency. It also offers the option for users to execute repeated tests for Crowdsource, Challenge and
QuickCheck tests. Users can export their data to CSV or JSON file format.

Crowdsource Test: This type of test collects data from users to assess the performance of mobile broadband
and internet services. Tests measure download and upload speeds, latency, packet loss, and other relevant
metrics related to their internet and mobile broadband connections. The collected data is crowdsourced,
meaning it comes from a broad and diverse range of users across the United States. This approach provides a
comprehensive view of network performance. The FCC uses the data to analyze the state of broadband and
wireless services in different regions.

Challenge Test: A Challenge Test is used to evaluate the accuracy of the broadband coverage maps provided
by internet service providers. It is designed to encourage consumers to dispute the broadband coverage
information reported by ISPs. Tests measure download and upload speeds, latency, packet loss, and other
relevant metrics related to their internet and mobile broadband connections. Multiple challenge tests within
a geographic area that meet certain criteria are used to challenge a provider’s mobile broadband coverage in
that area. Speed tests that generate a challenge are shared with the provider and help improve and update
the FCC’s National Broadband Map.

QuickCheck Test: A QuickCheck Test enables users to test the performance of their wireless network
connection without submitting a challenge or sharing their contact information with the FCC. Tests measure
download and upload speeds, latency, packet loss, and other relevant metrics related to their internet and
mobile broadband connections.

Repeated Crowdsource, Challenge or QuickCheck Test: This feature allows users to perform back-to-back
Challenge, Crowdsource or QuickCheck tests without having to start a new test each time. Users can specify
the number of tests, the time between each test, and the duration of the repeated tests. The maximum
duration for these repeated tests is 4 hours. Users can interrupt repeated testing by tapping the "Stop Test"
button. A repeated test session can be stopped after the completion of a test cycle.

Background Test (Android Only): This feature allows users to run periodic background tests. Users have the
ability to select the preferred schedule of background tests: daily, weekly, or monthly. Once users enable the
background test feature, tests will autonomously run based on the schedule selected, eliminating the need for
manual initiation by the user. Users may enable or disable the background test feature.

	I. Introduction
	II. Mobile Broadband Performance Testing
	A. FCC Mobile Speed Test App Methodology Overview
	1. Measurement Process
	2. Performance Testing and Metrics
	Figure 1: Test Server Selection Process

	B. Test System Architecture
	Figure 2: Mobile Broadband Test Architecture

	C. Download Speed and Upload Speed
	Figure 3: Warmup and Testing cycle for 1 single thread for Download
	1 single thread for Upload

	D. Latency, Packet Loss and Jitter
	Figure 5: Example showing Latency Test Methodology
	Table 1: Example showing Packet Delay Variation

	E. Background Testing
	F. Test Server and Data Collection
	1. Android Test Flow and Environmental Data
	Table 2: Android Data Dictionary
	2. iOS Test Flow and Environmental Data
	Table 3: iOS Data Dictionary
	G. App Functionality

