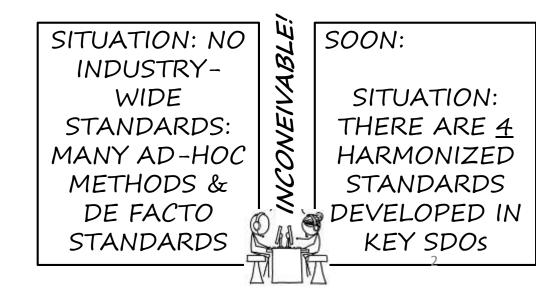

Standards Developments FCC Gigabit Meas. WG

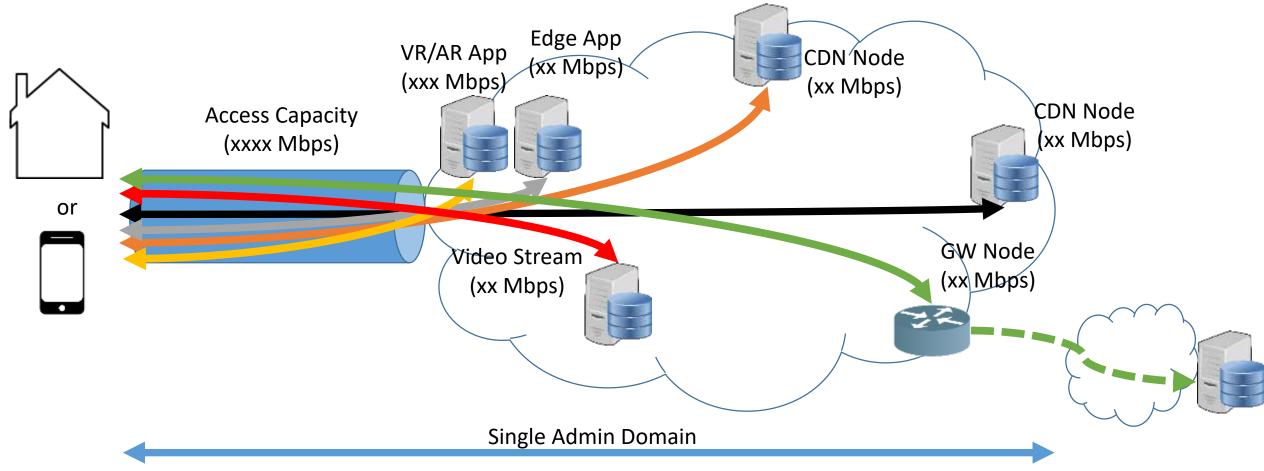

Al Morton, AT&T Labs April 2020

Where are we?

- Clearly defined, Repeatable Measurements have never been more important in this context.
 - Industry succeeded with ad hoc methods in closed systems at lower rates.
- The need for change recognized ~2 years ago
 - Anticipation of needs in Standards work? Inconceivable!
- Motivations for measurement are many, but most important is to:
 - understand what matters, and
 - be clear about WHAT will be measured

PERMANENT LINK TO THIS COMIC: HTTPS://XKCD.COM/927/

Designing Measurements: Today's clear trends


6 years ago:

- User access was the bottleneck;
- The main emphasis on Speed;
- TCP was *the*reliable transport;
- Measure multi-operator paths from user to content, and
- Measure performance across Gateways between Tier 1 Ops

Today's trends:

- Mob. Carrier Agg & Gbps access
- Latency also/more critical
- UDP with QUIC large & growing
- Content moving to the user: CDNs, Mobile Edge Compute
- Content everywhere, Less traffic & less congestion at Gateways

Service Capacity has Access Scope (user paths become diverse beyond)

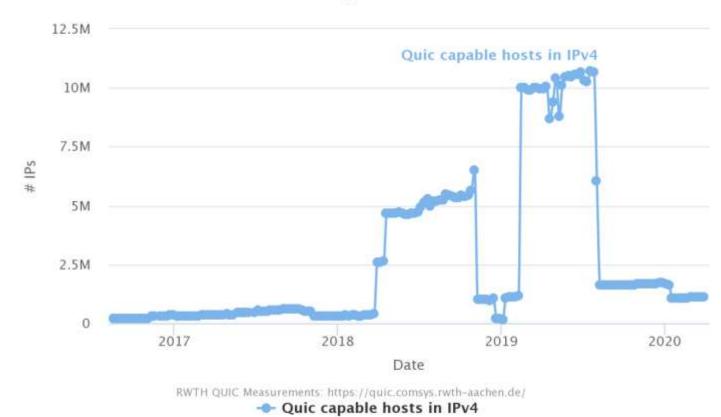
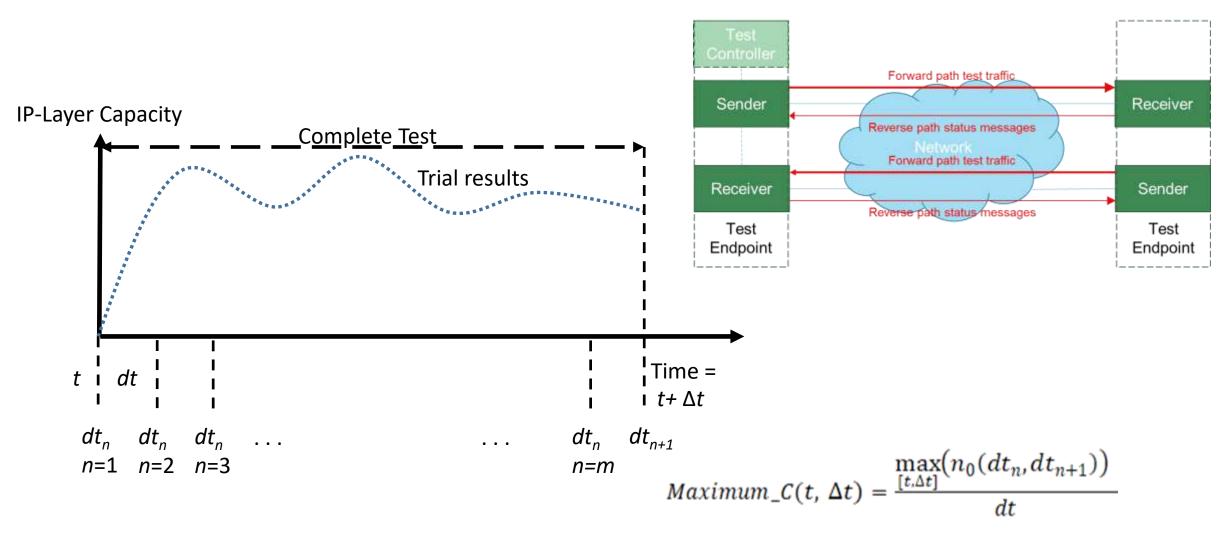

Example indications of High Performance needs Hint Latency too!

Table	1:	Exemp	lary	use	case	analysis
-------	----	-------	------	-----	------	----------

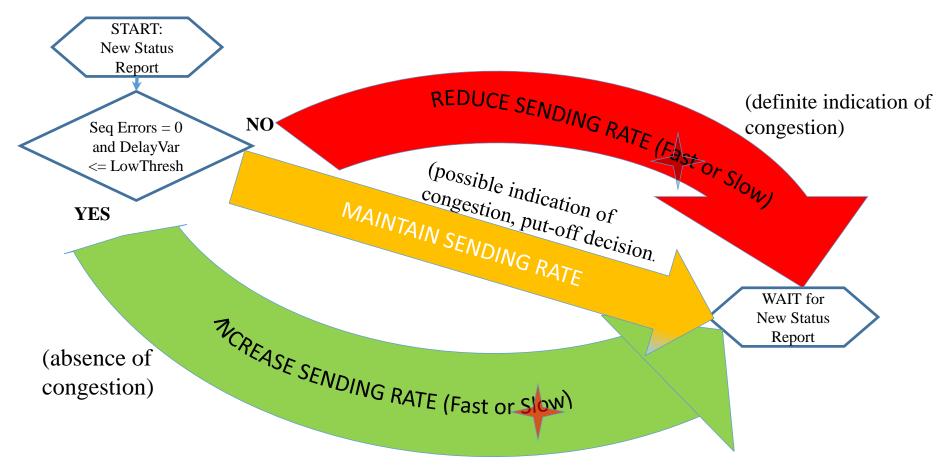
Service	Content	Characteristic			Cloud-Edge	Possible
	Sever	Latency	Bandwidth	Privacy	Coordination	Location
AR/VR	Local	<5ms	100Mbps~	No	Sync but not	Access ring
			9.4Gbps		real-time	(Edge DC)
V2X	Local	<10ms	>100Mbps	No	Processed	Access ring
					data real-	(Edge DC)
					time Sync	
Video	Local	Variable	>20Mbps	No	Processed	Access ring
Surveillance					data real-	(Edge DC)
					time Sync	
Smart factory	Local	<10ms	Variable	Yes	Only in	Factory (Edge
					private Cloud	DC)
Enterprise	Local	<10ms	Variable	Yes	Only in	Enterprise
Cloud (e-health)					private Cloud	(Edge DC)
IOT	Local	Variable	Variable	No	Processed	Access ring or
management	/Cloud				data but not	Collector ring
					real-time	(Edge DC or
					Sync	Local DC)
Entertainment	Cloud	10ms	>100Mbps	No	Local caching	Collector ring
(8K TV and						(Local DC)
Gaming)						


UDP-based Google QUIC Traffic: Host Support

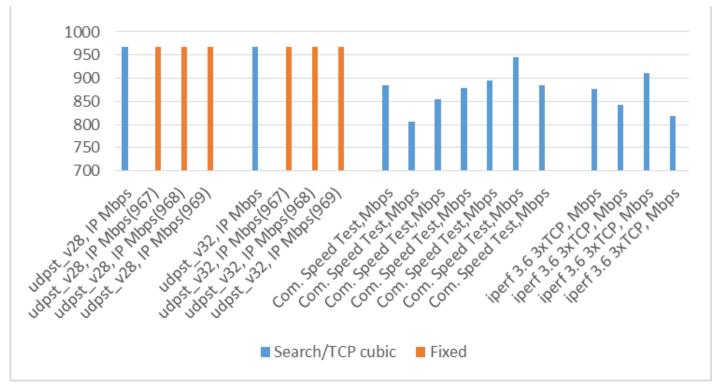
 APNIC blog: How much of the Internet is using QUIC? By Jan Rüth on 15 May 2018: "... Akamai officially announced its QUIC rollout, we noticed a drastic increase..." (Akamai is a Cache/CDN) <u>Current Results</u>

QUIC support in IPv4

High-level View of the Metric and Method


Standards High-Level Status: IP-Layer Capacity Metric and Measurements

- ITU-T Study Group 12 <u>Approved</u>
 - Question 17 on Packet Network Performance the Metric and Method of Measurement to Recommendation <u>Y.1540 - 2019 (Annexes A and B)</u>
 - Considerable background (test results; research) in Appendices X through XIII
- ETSI TC Speech and Multimedia Transmission Quality (STQ)
 - Approved the Metric in TS 103 222 Part 2 on High Speed Internet KPIs
 - Reference to Rec Y.1540 for all other material
- Broadband Forum (BBF) Project Approved: WT-471
 - Standardize the identical Metric and Methods with additional details on Measurement Points and Information Model for control and reporting.
- IETF IP Performance Measurements (IPPM) Working Group
 - Internet Draft Adopted by WG, adding Metric details, Measurement Considerations, and Results presentation formats


Search algorithm at high level

Three Alternatives: reaction to measurements returned in Status Messages

- ability to control its actions directly (tuning specific parameters)
- More flexible than in CCA with TCP: CUBIC and BBR

1 Gbps Downlink Meas. Comparison, Mbps

udpst, Common Speed Test Web Sockets Clients and iPerf 3.6 with TCP Cubic (default), in NJ udpst, Common Web Sockets, and iPerf 3.6 Servers

=

Summary of SG 12 testing (tests continue)

The consensus on Lab and Field measurement results was that UDP is the preferred transport protocol for capacity assessment:

- UDP indicated accurate "ground truth" assessment (lab) and more consistent (field) results for Max IP-Layer Capacity
- UDP tools were able to measure loss, delay, delay variation and reordering.
- TCP registered lower rates than UDP tests and greater rate variability under various challenging circumstances (RTT, competing traffic, etc.).
- TCP measurements on 1 Gbps PON exhibit a significant underestimation of capacity.
- Laboratory conclusions on UDP as the benchmark, and TCP as underestimating capacity were supported by the field measurements.
- Tests of stationary LTE access indicated inherent variability, as expected.

Further investigations

- Mobile endpoint testing
- DoH may cause issues for some crowd-sourced measurements
 - Current method is almost insensitive to RTT (unlike TCP).
- Suggestions?

12733 Server: EastCoast, Protocol: UDP 12734 UDP Speed Test, Copyright (C) 2019, All Rights Reserved 12735 Software Rev: 4.0, Built: Jul 28 2019 20:09:20 12736 Mode: Client, Protocol Version: 40 12737 Downstream Test Time(sec): 10, DelayLimits(ms): 30-90, StatusFeedback(ms): 50, JumboSizes: Enabled, LoadRateIndex: -1 PktLossRatio: 0.00E+00, Loss/OoO: 0/0, DelayVar(ms): 0/0/2, SampledRTT(ms): 8-10, Mbps(L3/IP): 293.06 12738 -Time(sec): 1.001 12739 -Time(sec): 2.002 PktLossRatio: 0.00E+00, Loss/OoO: 0/0, DelayVar(ms): 0/0/1, SampledRTT(ms): 8-10, Mbps(L3/IP): 493.08 PktLossRatio: 0.00E+00, Loss/OoO: 0/0, DelayVar(ms): 0/0/1, SampledRTT(ms): 8-10, Mbps(L3/IP): 693.10 12740 -Time(sec): 3.003 PktLossRatio: 5.57E-03, Loss/OoO: 487/0, DelayVar(ms): 0/0/8, SampledRTT(ms): 8-16, Mbps(L3/IP): 867.66 12741 -Time(sec): 4.004 12742 -Time(sec): 5.005 PktLossRatio: 5.45E-05, Loss/OoO: 5/0, DelayVar(ms): 0/0/1, SampledRTT(ms): 8-10, Mbps(L3/IP): 912.71 12743 -Time(sec): 6.006 PktLossRatio: 1.71E-04, Loss/000: 16/0, DelayVar(ms): 0/0/1, SampledRTT(ms): 8-10, Mbps(L3/IP): 927.89 12744 -Time(sec): 7.007 PktLossRatio: 1.47E-04, Loss/OoO: 14/0, DelayVar(ms): 0/0/1, SampledRTT(ms): 8-11, Mbps(L3/IP): 943.54 12745 -Time(sec): 8.008 PktLossRatio: 9.09E-04, Loss/OoO: 88/0, DelayVar(ms): 0/0/1, SampledRTT(ms): 8-10, Mbps(L3/IP): 961.89 12746 -Time(sec): 9.009 PktLossRatio: 1.81E-03, Loss/OoO: 176/0, DelayVar(ms): 0/0/2, SampledRTT(ms): 9-12, Mbps(L3/IP): 966.38 12747 -Time(sec): 10.010 PktLossRatio: 3.31E-03, Loss/OoO: 323/0, DelayVar(ms): 0/1/2, SampledRTT(ms): 8-12, Mbps(L3/IP): 965.60 12748 Downstream Summary-> PktLossRatio: 1.20E-03, Loss/OoO: 1109/0, DelayVar(ms): 0/0/8, SampledRTT(ms): 8-16, Mbps(L3/IP): 802.49 12749 Downstream Maximum--> Mpps(L3/IP): 966.38, Mpps(L2/Eth): 980.34, Mpps(L1/Eth): 995.87, Mpps(L1/Eth+VLAN): 998.97 12750 04:15:13

SELECTED REFERENCES (Standards/Drafts on Slide 11)

- Hackfest 106 Slides: <u>Test Results</u>
- Hackfest 105 Slides: Test Results
- Liaisons from ITU-T SG 12 and ETSI TC STQ see email for links, or
- https://datatracker.ietf.org/liaison/1645/
- <u>https://datatracker.ietf.org/liaison/1643/</u>
- https://datatracker.ietf.org/liaison/1634/
- https://datatracker.ietf.org/liaison/1632/
- More Test results in the Liaison attachments

References (Standards/Drafts on Slide 11)

- "Improved Internet speed tests can enhance QoS and QoE", PQS 2013, <u>https://irtf.org/raim-2015-papers/raim-2015-paper1.pdf</u>
- MEC White Paper, "MEC in 5G networks", <u>https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5_G_FINAL.pdf</u>
- Growth of Google QUIC traffic on Mobile <u>https://owmobility.com/blog/meteoric-rise-google-quic-worrying-mobile-operators/</u>
- How much of the Internet is using Google QUIC? <u>https://blog.apnic.net/2018/05/15/how-much-of-the-internet-is-using-quic/</u>
- 5G Unlocks ... <u>https://www.huawei.com/us/industryinsights/outlook/mobile-broadband/insights-reports/5g-unlocks-a-worldof-opportunities</u>
- [EC: Meas for Fixed/Mobile/5G] European Commission: Fixed and Mobile Convergence in Europe: Quality Measurements for 5G and Network Densification