Examining Current & Future Connectivity Demand for Precision Agriculture

Interim working group report
July 22, 2020

Working group members:

Dan Leibfried
Blake Hurst
Andy Bater
Peter Brent
Omar Carrillo
Dr. Ranveer Chandra
Chris Chinn
Valerie Connelly
Monica DeLong
Alex Johns
James Kinter
Jennifer Manner
Ron Miller
Catherine Moyer
Steven Piccirillo
Aeric Reilly
Brian Scarpelli
Steven Strickland
Lucas Turpin
George Woodward
Disclaimer

• This presentation is a work in progress and shouldn't be viewed as a final statement or set of recommendations from the working group

• The working groups initial official report by mandate will be submitted for review in the coming months
Working Group Mandate

• The current and future connectivity needs for precision agriculture in terms of coverage, speed, monthly usage, latency, and other factors; the technologies available to meet those needs; and the advantages and limitations of those technologies;

• Whether and how connectivity needs vary by agricultural product geography, and other factors;

• How and why demand for precision agriculture needs may change over time due to, for example, population increases and shifts, environmental challenges, changes in diets, and increased demand for knowing where food is sourced; and,

• Whether the amount or type of connectivity available is shifting or will shift the choices of agricultural producers, for instance from growing one particular crop or crop type to another
Executive Summary

The case for action is clear and compelling

Both current and future use cases require closing connectivity gap and improving connectivity performance

Team has made progress while more work in refining and aligning across working groups lies ahead
The US Census Bureau projects the U.S. population to increase by ~80 million from 2014 levels in the next 40 years.

“About 52 percent of the 2012 U.S. land base (including Alaska and Hawaii) is used for agricultural purposes, including cropping, grazing (on pasture, range, and in forests), and farmsteads/farm roads.” – USDA

The amount of land available to grow food isn’t changing.

Food Security is a Growing Issue for the U.S.

Food security is already a problem in the U.S. and it will only get worse as the population increases.

Food Waste is a Growing Problem

USDA estimates: amount of food loss and waste from the food supply at the retail and consumer levels: *in 2010 food loss and waste at the retail and consumer levels was 31 percent of the food supply, equaling 133 billion pounds and almost $162 billion.*
An Answer ... Precision Agriculture

Precision Agriculture is the use of technology and data to make better decisions and automate practices to produce more and use less.

Why Precision Ag
- Reduce inputs
- Increase outputs
- Lower environmental impact
- Integrate into the supply chain

Precision Ag Results
- Feed the world
- Reduce environmental impact of agricultural practices
- Improve profitability of U.S. agriculture
- Increase skilled labor demand
- Food gets where it's needed
- International competitiveness
- Reduced food waste/spoilage
Connectivity is key to success

The value of technology in agriculture is amplified exponentially when connected, enabling data to flow.

Connectivity (Broadband and Narrowband) is the enabling fabric of Precision Agriculture
April, 2019 –
USDA Report on Rural Broadband and Benefits of Next Generation Precision Agriculture

“Reliable, High-Speed Broadband e-Connectivity is Essential to Enhanced Agricultural Production”

“When we are able to deploy broadband ubiquitously, think of all the things we will be able to design, harvest, and develop ... Broadband in rural America will be as transformative in the 21st century as rural electrification was in the last century.” - U.S. Secretary of Agriculture Sonny Perdue

Connectivity: The Current State Dilemma

If it were profitable to deploy broadband and faster connectivity options to rural communities and areas of high agricultural production, communications service providers would have already done it.

If we wish to ensure food security for the U.S. population, the government must enable the adoption of precision agriculture by expanding broadband connectivity across as much agricultural land as possible, and high-speed connectivity to as many farms as possible.
Rural Americans have consistently lower levels of broadband adoption

% of U.S. adults who say they have ...

<table>
<thead>
<tr>
<th></th>
<th>Home broadband</th>
<th>Smartphone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Suburban</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Respondents who did not give an answer are not shown.

PEW RESEARCH CENTER

Working Group Progress – To Date

• Demand Side
 • Development of current and future use cases by 3 agricultural sectors
 • Row Crop (e.g. corn and soybeans) & Broad Acre (e.g. wheat, rice)
 • Livestock (e.g. cattle, dairy, poultry)
 • Specialty Crops (e.g. apples, vegetables)
Technologies & Trends

Evaluate currently available tech & future trends for speed, latency, & cost

<table>
<thead>
<tr>
<th>Technology</th>
<th>Bandwidth (peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite broadband</td>
<td>100/10 Mbps</td>
</tr>
<tr>
<td>White spaces UHF</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>Wi-Fi HaLow (802.11ah)</td>
<td>150 Mbps</td>
</tr>
<tr>
<td>Wi-Fi 802.11ac</td>
<td>210 Mbps</td>
</tr>
<tr>
<td>Bluetooth/BLE</td>
<td>2 Mbps</td>
</tr>
<tr>
<td>3G Cellular</td>
<td>7.2 Mbps</td>
</tr>
<tr>
<td>4G Cellular</td>
<td>150 Mbps</td>
</tr>
<tr>
<td>4G Advanced Cellular</td>
<td>1 Gbps</td>
</tr>
<tr>
<td>5G</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>CBRS</td>
<td>790 Mbps</td>
</tr>
<tr>
<td>NB-IoT</td>
<td>250 Mbps</td>
</tr>
<tr>
<td>CAT-M1 (LTE-M)</td>
<td>1 Mbps</td>
</tr>
<tr>
<td>LoRaWAN</td>
<td>50 Kbps</td>
</tr>
<tr>
<td>Ingenu</td>
<td>624/156 Kbps</td>
</tr>
<tr>
<td>Sigfox</td>
<td>100 Bps</td>
</tr>
<tr>
<td>Weightless</td>
<td>200 Bps-100 Kbps</td>
</tr>
<tr>
<td>NFC</td>
<td>424 Kbps</td>
</tr>
<tr>
<td>RFID</td>
<td>4-8 Kbps</td>
</tr>
<tr>
<td>Zigbee</td>
<td>20-250 Kbps</td>
</tr>
</tbody>
</table>

Connectivity Working Group - General Assumptions

0 – 2 Years – 2020 to 2022

Access Networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Range</th>
<th>Bandwidth/Speed</th>
<th>Latency</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>TV WhiteSpace</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Private LTE</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>3G/4G</td>
<td></td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>5G</td>
<td></td>
<td>H</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>LoRa WAN</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M/L</td>
</tr>
<tr>
<td>TVWS</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Fiber</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Satellite – Geo</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Satellite - LEO</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
</tbody>
</table>

General Spectral Categories

<table>
<thead>
<tr>
<th>Bandwidth/Speed</th>
<th>Latency</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>M/H</td>
<td>L</td>
<td>M/L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Takeaways:

• No silver bullet for rural broadband in the next 5 years
• Need for Edge Compute on farms to accelerate broadband scenarios
• Policies & Grants needed for increased broadband coverage

Common Connectivity

<table>
<thead>
<tr>
<th>Technology</th>
<th>Bandwidth/Speed</th>
<th>Latency</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>H</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Satellite – Geo</td>
<td>L</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Satellite - LEO</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
</tbody>
</table>
Matching Demand with Supply

Livestock

<table>
<thead>
<tr>
<th></th>
<th>Low (<100 kbps)</th>
<th>Med (< 5Mbps)</th>
<th>High (5 Mbps+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat/Beef</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free-range grazing</td>
<td>Estrus detection</td>
<td>Activity monitor</td>
<td>Body scanner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rumination/Grazing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(research focused)</td>
<td></td>
</tr>
<tr>
<td>Feed lots</td>
<td>Activity monitor</td>
<td>Movement monitoring</td>
<td>Automated BCS scores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(time & distance/proximity to feed bunk)</td>
<td>Feed intake</td>
</tr>
<tr>
<td>Dairy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement calves</td>
<td>ID Tags, birth weight, calving ease</td>
<td>Vet data, pedigree, records, automated calf feeding</td>
<td></td>
</tr>
<tr>
<td>Production cows</td>
<td>Productivity (lbs of milk),</td>
<td>Robotic systems (fat/protein content), health, monitoring rumination (accelerometer, etc.)</td>
<td>Automated BCS scoring, monitoring eating & rumination using AI/ML, remote health/vets, remote nutritionists</td>
</tr>
<tr>
<td>Dry cows</td>
<td>Estrus monitoring</td>
<td>Feed monitoring</td>
<td></td>
</tr>
</tbody>
</table>
Livestock Demand with Supply

Estrus Detection

Activity Monitors

Cow Body Scanner

Bio-Sensor

Data Gathering Box

LTE / WIPI

IDC Server

LTE / WIPI

Mobile Device

SMS Notification to Manager / Vet.
Use Case Example – Dairy Farm (Livestock)

• Commonly available Precision Agriculture Techniques
 • Robotic milking machines
 • Activity systems

• Developing Precision Agriculture Techniques
 • Phenotyping data collection
Use Case Example – Dairy Farm (Livestock)

Robotic Milking Machine
• Benefit – Efficiency / Data Collection
 • Cows are milked at will
 • Effort can be used elsewhere
 • Data automatically collected
• Requires Internet Connectivity
 • Software Updates
 • Remote Diagnostics
 • Herd Performance Upload

Lely Robotic Milking Machine @ Valley Wide Farm, Spring Mills, PA
Activity Monitors

- **Benefit – Data Collection / Care**
 - Accelerometers measure vibrations and movement to determine cow activity
 - Some systems can monitor rumen function, temperature, eating time, and cow location and position

- **Requires Internet Connectivity**
 - Much like a Fitbit® or other smart devices for humans, downloads are facilitated by Broadband
Future Use Case Example – Dairy Farm (Livestock)

What we could do with Phenotyping

- Benefit – Data Collection - Breeding
 - High-frequency measurements of animal performance and environments provide data in real time or near real time
 - Advanced analysis assists with animal ranking and selection
- Requires Internet Connectivity
 - "The lack of access to rural broadband internet is also a growing problem because of the need to transfer data to and from farms."

The future of phenomics in dairy cattle breeding
Animal Frontiers, Volume 10, Issue 2, April 2020
"The application of plant phenotyping in the field is still under rapid development and this application has strong linkages with precision agriculture."

Plant Phenotyping Research Trends, a Science Mapping Approach
Corrado Costa et al
Plant Sci., 07 January 2019
"AI (Artificial Intelligence) can improve predictions by taking advantage of large datasets from real-time sources (i.e., remote sensors, digital farm equipment, and satellites)."

"We need more observations of the phenomena we seek to predict in order to train better models"

"Observations from farms and ranches across landscapes and regions are needed, which can be facilitated by mobile technologies and collaborative networks involving farmers and ranchers."

Scaling Up Agricultural Research With Artificial Intelligence
Brandon T. Bestelmeyer USDA-ARS et al
IEEE IT Professional (Volume: 22, Issue: 3, May 2020)
Up Next

• Have begun drafting initial report for September 2020 delivery

• Continuing development of use cases

• Classifying activities by bandwidth and other needs

• Identifying the magnitude of benefits

• Development of initial recommendations
Collaboration Needs

• Cross-functional working group review of direction and Draft document
 • Eliminate redundancy and share knowledge

• Team desires to capture feedback from private and public sectors
 • OEMs (farm equipment to sensor devices) on connectivity roadmap for their products
 • Current/future Service Provider options for Ag sector
 • State and Local initiatives (independent of FCC) to improve rural community access
 • Quantify other rural broadband programs that may compliment Precision Ag

• Continue technical evaluation for report
 • Aggregate bandwidth drivers by farm type and size
 • Heatmap connectivity options
 • Impacts of premise networking and edge computing to public bandwidth consumption
Just the beginning!